The ventrolateral hypothalamic parvafox (formerly called PV1-Foxb1) nucleus is an anatomical entity of recent discovery and unknown function. With a view to gaining an insight into its putative functional role(s), we conducted a gene-microarray analysis.
Parvalbumin-Neurons of the Ventrolateral Hypothalamic Parvafox Nucleus Receive a Glycinergic Input: A Gene-Microarray Study.
Specimen part
View SamplesThe hippocampus is part of a brain network essential for memory function. Paradoxically, the hippocampus is also the brain structure that is most sensitive to hypoxic-ischemic episodes. Here we show that the expression of genes associated with glycolysis and glutamate metabolism in astrocytes and the coverage of excitatory synapses by astrocytic processes undergo significant decreases in the CA1 field of the monkey hippocampus during postnatal development. Given the established role of astrocytes in the regulation of glutamate concentration in the synaptic cleft, our findings indicate that a developmental decrease in astrocytic processes underlies the selective vulnerability of CA1 during hypoxic-ischemic episodes in adulthood, its decreased susceptibility to febrile seizures with age, as well as contribute to the emergence of selective, adult-like memory function.
Developmental regulation of gene expression and astrocytic processes may explain selective hippocampal vulnerability.
Specimen part
View SamplesExpression data from Caenorhabditis elegans let-418(RNAi), mep-1(RNAi) and gfp(RNAi) L1 larvae.
Different Mi-2 complexes for various developmental functions in Caenorhabditis elegans.
Disease
View SamplesSexual differentiation in zebrafish is complex. Although zebrafish sex determination is primarily genetic, hormonal and environmental factors can influence sexual development. 17 alpha-methyltestosterone (MT), a synthetic androgen, induces female-to-male sex reversal in zebrafish. MT treatment is routinely used in aquaculture for production of all-male populations. However, the molecular mechanisms underlying 17 alpha-methyltestosterone induced gonad masculinisation in fish are poorly understood.In this study, we analysed gonad transcriptomes of zebrafish treated with 17 alpha-methyltestosterone during gonadal development (from 20 dpf to 40 dpf and 60 dpf) and compared them with testis and ovary transcriptomes of untreated zebrafish. These data improve our understanding of the role of androgens in teleost sex differentiation.
Histological and transcriptomic effects of 17α-methyltestosterone on zebrafish gonad development.
No sample metadata fields
View SamplesDifferentiation assays with neural progenitor cells of the enteric nervous system (ENS) showed elongated neurite outgrowth under influence of 3,5,3'-Triiodothyronine (concentrations 50 nm and 100 nm). For analysis, neural cells were stained with TUJ1 (beta-Tubulin III). Microarray analysis should enlighten these results on a genetical basis and give hints about the regulation pathways.
Molecular and cell biological effects of 3,5,3'-triiodothyronine on progenitor cells of the enteric nervous system in vitro.
Specimen part, Treatment
View SamplesPostnatal neural progenitors of the enteric nervous system are a potential source for future cell replacement therapies of developmental dysplasia like Hirschsprung's disease. However, little is known about the molecular mechanisms driving the homeostasis and differentiation of this cell pool. In this work, we conducted Affymetrix gene chip experiments to identify differences in gene regulation between proliferation and early differentiation of enteric neural progenitors. We detected a total of 1333 regulated genes that were linked to different groups of cellular mechanisms involved in cell cycle, apoptosis, neural proliferation, and differentiation. As expected, we found a strong inhibition of cell cycle progression as well as an enhanced expression of neuronal and glial markers. We further found a marked inactivation of the canonical Wnt pathway during the beginning of cellular differentiation. Taken together, this data illustrated the various mechanisms taking place during the proliferation and early differentiation of enteric neural progenitor cells.
Comparative Microarray Analysis of Proliferating and Differentiating Murine ENS Progenitor Cells.
Specimen part
View SamplesDuring embryogenesis the heart forms as a linear tube that then undergoes multiple simultaneous morphogenetic events to obtain its mature shape. To understand the gene regulatory networks (GRNs) driving this phase of heart development, during which many congenital heart disease malformations likely arise, we conducted an RNA-seq timecourse in zebrafish from 30 hpf to 72 hpf and identified 5861 genes with altered expression. We clustered the genes by temporal expression pattern, identified transcription factor binding motifs enriched in each cluster, and generated a model GRN for the major gene batteries in heart morphogenesis.
No associated publication
No sample metadata fields
View SamplesMasseter and Tibialis anterior muscles from adult female control mice to determine expression differences between muscle groups
Expression profiling reveals heightened apoptosis and supports fiber size economy in the murine muscles of mastication.
Sex, Age, Specimen part
View SamplesNuclear reprogramming is an inefficient process with only a small proportion of cells successful converting into induced pluripotent stem (iPS) cells. However, in order to molecularly understand the process these rare intermediates need to be identified and isolated for profiling. In the context of this project we purified the rare reprogramming for three cell types (Fibroblasts, Neutrophils and Keratinocytes) by fluorescent activated cell sorting and submitted them, together with the resulting iPS cells, to RNA sequencing.
No associated publication
Sex, Age, Specimen part, Cell line
View SamplesThe isolation of pure populations of mouse intestinal stem cells (ISCs) is essential to facilitate functional studies of tissue homeostasis, tissue regeneration and intestinal diseases. However, the purification of ISCs has relied predominantly on the use of transgenic reporter alleles in mice. Here, we introduce a new combinational cell surface marker mediated strategy that allows the isolation of an ISC population transcriptionally and functionally equivalent to the gold standard Lgr5-GFP ISCs. We tested the ability of three cell surface marker mediated isolated strategies (termed SM2, SM4 and SM6 according to the number of key cell surface markers used) to purify ISCs and transcriptionally compared them to established standards, Lgr5-GFP high cells and cells negative for any ISC markers (Negative). The best cell surface marker mediated strategy (SM6) allowed the isolation of ISCs from reporter free mice (SM6-WT) that were functionally and transcriptionally distinct from cells isolated from transgenic mice (SM6-TG) due to Lgr5 haploinsufficiency. Overall design: To adequately benchmark the quality of our method with the existing methods, we performed first RNA sequencing with the Lgr5-GFP strain (C57/Bl6 background) on 5 FACS purified groups: SM2, SM4, SM6, Lgr5-GFPhigh reference population and cells negative or low for all of the cell surface markers used. We also performed RNA sequencing of SM6-TG and SM6-WT cells to investigate in detail potential transcriptional differences between them.
No associated publication
Sex, Age, Specimen part, Cell line
View Samples