Despite recent advances in the treatment of multiple myeloma (MM), it remains an incurable disease potentially due to the presence of resistant myeloma cancer stem cells (MM-CSC). Although the presence of clonogenic cells in MM was described more than 30 years ago, the phenotype of MM-CSC is still a matter of debate, especially with respect to the expression of syndecan- 1 (CD138). Here, we demonstrate the presence of two subpopulations - CD138++ (95-99%) and CD138low (1-5%) - in eight MM cell lines. To find out possible stem-cell-like features, we have phenotypically, genomic and functionally characterized the two subpopulations. Our results show that the minor CD138low subpopulation is morphologically identical to the CD138++ fraction and does not represent a more immature B-cell compartment (with lack of CD19, CD20 and CD27 surface expression). Moreover, both subpopulations have similar gene expression and genomic profiles. Importantly, both CD138++ and CD138low subpopulations have similar sensitivity to bortezomib, melphalan and doxorubicin. Finally, serial engraftment in SCID mice shows that CD138++ as well as CD138low cells have self-renewal potential and they are also phenotypically interconvertible. Overall, our results differ from previously published data which attribute a B-cell phenotype to MM-CSC and urge the need to explore more reliable markers to discriminate true clonogenic myeloma cells.
Phenotypic, genomic and functional characterization reveals no differences between CD138++ and CD138low subpopulations in multiple myeloma cell lines.
Disease, Cell line
View SamplesMethylene diphenyl diisocyanate is a chemical known to cause asthma. The present study uses mice to investigate exposure-induced changes in lung gene expression and effects of a chloride channel inhibitor
Analysis of Lung Gene Expression Reveals a Role for Cl<sup>-</sup> Channels in Diisocyanate-induced Airway Eosinophilia in a Mouse Model of Asthma Pathology.
Sex
View SamplesThe epithelial-mesenchymal transition (EMT), considered essential for metastatic cancer, has been a focus of much research, but important questions remain. Here, we show that silencing or removing H2A.X, a histone H2A variant involved in cellular DNA repair and robust growth, induced mesenchymal-like characteristics including activation of EMT transcription factors, Slug and ZEB1, in HCT116 human colon cancer cells. Ectopic H2A.X re-expression partially reversed these changes; as did silencing Slug and ZEB1. In an experimental metastasis model, the HCT116 parental and H2A.X-null cells exhibited similar metastases levels, but the cells with re-expressed H2A.X exhibited substantially elevated levels. We surmise that H2A.X re-expression led to partial EMT reversal and increased robustness in the HCT116 cells, permitting them to both form tumors and to metastasize. In a human adenocarcinoma panel, H2A.X levels correlated inversely with Slug and ZEB1 levels. Together, these results point to H2A.X as a novel regulator of EMT.
The histone variant H2A.X is a regulator of the epithelial-mesenchymal transition.
Cell line
View SamplesWe hypothesized that gene expression in lungs of Fra-1+/+ and Fra-1-/- mice are divergent thus contributing fibrosis. More specifically, Fra-1-/- mice are increased susceptible to fibrosis. In order to test these hypotheses at the gene expression level, we utilized microarray analysis to examine transcriptional differences between Fra-1+/+ and Fra-1-/- mice at early time point.
Expression profiling of genes regulated by Fra-1/AP-1 transcription factor during bleomycin-induced pulmonary fibrosis.
Sex, Age, Specimen part
View SamplesRATIONALE: Mechanical ventilation (MV) is an indispensable therapy for critically ill patients with acute lung injury and the adult respiratory distress syndrome. However, the mechanisms by which conventional MV induces lung injury remain unclear. OBJECTIVES: We hypothesized that disruption of the gene encoding Nrf2, a transcription factor which regulates the induction of several antioxidant enzymes, enhances susceptibility to ventilator-induced lung injury (VILI), while antioxidant supplementation attenuates such effect. METHODS: To test our hypothesis and to examine the relevance of oxidative stress in VILI, here we have assessed lung injury and inflammatory responses in Nrf2-deficient (Nrf2(-/-)) mice and wildtype (Nrf2(+/+)) animals following acute (2 h) injurious model of MV with or without administration of antioxidant. MEASUREMENTS AND MAIN RESULTS: Nrf2(-/-) mice displayed greater levels of lung alveolar and vascular permeability and inflammatory responses to MV as compared to Nrf2(+/+) mice. Nrf2-deficieny enhances the levels of several pro-inflammatory cytokines implicated in the pathogenesis of VILI. We found diminished levels of critical antioxidant enzymes and redox imbalance by MV in the lungs of Nrf2(-/-) mice; however antioxidant supplementation to Nrf2(-/-) mice remarkably attenuated VILI. When subjected to clinically relevant prolong period of MV, Nrf2(-/-) mice displayed greater levels of VILI than Nrf2(+/+) mice. Expression profiling revealed lack of induction of several VILI genes, stress response and solute carrier proteins and phosphatases in Nrf2(-/-) mice. CONCLUSIONS: Collectively, our data demonstrate for the first time a critical role for Nrf2 in VILI, which confers protection against cellular responses induced by MV by modulating oxidative stress.
Genetic and pharmacologic evidence links oxidative stress to ventilator-induced lung injury in mice.
No sample metadata fields
View SamplesTo explore the primary cause of Dilated Cardiomyopathy in heart samples from DCM-diagnosed patients who had undergone heart transplant (hDCM), we set out to identify differentially expressed genes by massively parallel sequencing of heart samples. Overall design: Methods: Heart mRNA profiles from DCM-diagnosed patients who had undergone heart transplant (hDCM) were generated by deep sequencing, in triplicate, using Illumina GAIIx.
Bmi1 limits dilated cardiomyopathy and heart failure by inhibiting cardiac senescence.
No sample metadata fields
View SamplesTo explore the primary cause of Dilated Cardiomyopathy in Bmi1-null mice, we set out to identify differentially expressed genes by massively parallel sequencing of heart samples from Bmi1f/f;aMHCTM-Cretg/+ mice versus aMHCTM-Cretg/+ control mice (17 weeks postinduction). Overall design: Methods: Heart mRNA profiles of 17-weeks post-induction Bmi1f/f; MHCTM-Cretg/+ mice and MHCTM-Cretg/+ control mice were generated by deep sequencing, in triplicate, using Illumina GAIIx. Sequence reads were pre-processed with Cutadapt 1.2.1, to remove TruSeq adapters and mapped on the mouse transcriptome (Ensembl gene-build GRCm38.v70) using RSEM v1.2.3. The Bioconductor package EdgeR was used to normalize data with TMM and to test for differential expression of genes using GLM.
Bmi1 limits dilated cardiomyopathy and heart failure by inhibiting cardiac senescence.
No sample metadata fields
View SamplesOur studies identify a mechanism of signaling crosstalk during valve morphogenesis that sheds light on the origin of congenital heart defects associated with reduced Notch function. Overall design: Aortic and pulmonary cardiac valves were isolated by laser microdissection from WT and Jag1flox;Nkx2.5-Cre mouse embryos at stage E14.5, and their expression profile characterized by RNA-Seq.
Sequential Ligand-Dependent Notch Signaling Activation Regulates Valve Primordium Formation and Morphogenesis.
Specimen part, Subject
View SamplesIn this study we analyzed the behavior of bone marrow MSC (BM-MSC) from MPN patients with the mutation in JAK2V617F. We initially characterized the biological function and gene expression profile changes in BM-MSC from MPN patients when compared to BM-MSC of healthy donors (HD). Then, we established co-cultures between MSC cell lines (HTERT and HS5) and the UKE-1 MPN cell line, and performed RT-PCR to study if the leukemic cells were able to modify the genes related to hematopoietic support.
Mesenchymal stromal cells (MSC) from JAK2+ myeloproliferative neoplasms differ from normal MSC and contribute to the maintenance of neoplastic hematopoiesis.
Specimen part, Disease stage, Subject
View SamplesWe hypothesize that gene expression in the Type II cells of Nrf2+/+ and Nrf2-/- mice are divergent thus contributing the cell growth. More specifically, type II cells from Nrf2-/- mice have increased reactive oxygen species that cause the impaired cell growth. In order to test these hypotheses at the gene expression level, we utilized microarray analysis to examine transcriptional differences between Nrf2+/+ and Nrf2-/- cells.
Genetic dissection of the Nrf2-dependent redox signaling-regulated transcriptional programs of cell proliferation and cytoprotection.
No sample metadata fields
View Samples