The aim of this study is to identify genes implicated in the early steps of the autoimmune process, prior to inflammation in type 1 diabetes. Early Insulin AutoAntibodies (E-IAA) have been used as subphenotypic marker to select individual animals as type 1 diabetes prone and to compare gene expression patterns with insulin autoantibody negative NOD.
Early over expression of messenger RNA for multiple genes, including insulin, in the Pancreatic Lymph Nodes of NOD mice is associated with Islet Autoimmunity.
Age
View SamplesInflammation has a causal role in many cancers. In prostate cancers, epidemiological data suggest a link between prostatitis and subsequent cancer development, but a proof for this concept in a tumor model has been lacking. A constitutively active version of the IkappaB kinase 2 (IKK2), the molecule activated by a plethora of inflammatory stimuli, was expressed specifically in the prostate epithelium. Signaling of the IKK2/NF-kappaB axis was insufficient for transformation of prostate tissue. However, while PTEN+/- epithelia exhibited intraepithelial neoplasias only recognizable by nuclear alterations, additional IKK2 activation led to an increase in tumor size and formation of cribriform structures and to a fiber increase in the fibroblastic stroma. This phenotype was coupled with inflammation in the prostate gland characterized by infiltration of granulocytes and macrophages. Molecular characterization of the tissues showed a specific loss of smooth muscle markers as well as expression of chemokines attracting immune cells. Isolation of epithelial and stromal cells showed differential chemokine expression by these cells. Correlation studies showed the inflammatory phenotype coupled to loss of smooth muscle in infiltrated glands, but maintenance of the phenotype in glands where inflammation had decreased. Despite the loss of the smooth muscle barrier, tumors were not invasive in a stable genetic background. Data mining revealed that smooth muscle markers are downregulated in human prostate cancers and literature data show that loss of these markers in primary tumors is associated with subsequent metastasis. Our data show that loss of smooth muscle and invasiveness of the tumor are not coupled. Thus, inflammation during early steps of tumorigenesis can lead to increased tumor size and a potential change in the subsequent metastatic potential, but the tumor requires an additional transformation to become a carcinoma.
Persistent inflammation leads to proliferative neoplasia and loss of smooth muscle cells in a prostate tumor model.
Age, Specimen part
View SamplesWe examined the effects of TNFa and Spt5, the major DSIF subunit, on nascent and mature transcripts using RNA-Seq of chromatin-associated and cytoplasmic transcripts. Overall design: RNA was extracted from the cytosolic and chromatin fractions of control and Spt5 KD cells that were treated with TNFa for 1 hour
Analysis of Subcellular RNA Fractions Revealed a Transcription-Independent Effect of Tumor Necrosis Factor Alpha on Splicing, Mediated by Spt5.
No sample metadata fields
View SamplesNlrp10-deficient mice have a profound defect in helper T cell-driven immune responses. T cell priming is impaired due to a defect in the emigration of a dendritic cells from inflamed tissue and antigen transport to draining lymph nodes. DC chemotaxis to CCR7-dependent and independent ligands is intact in the absence of Nlrp10.
NLRP10 is a NOD-like receptor essential to initiate adaptive immunity by dendritic cells.
Specimen part, Treatment
View SamplesHIBM is a neuromuscular disorder characterized by adult-onset, slowly progressive distal and proximal muscle weakness. Here, gene expression was measured in muscle specimens from 10 HIBM patients carrying the M712T Persian Jewish founder mutation in GNE and presenting with mild histological changes, and from 10 healthy matched control individuals.
Mitochondrial processes are impaired in hereditary inclusion body myopathy.
No sample metadata fields
View SamplesMicroarray data allowed detection of genes that are highly expressed in the pineal gland.
A new cis-acting regulatory element driving gene expression in the zebrafish pineal gland.
Sex
View SamplesMicroarray data allowed detection of genes that are induced by light in the zebrafish pineal gland
The light-induced transcriptome of the zebrafish pineal gland reveals complex regulation of the circadian clockwork by light.
Sex, Specimen part, Treatment, Time
View SamplesMuscle biopsies from biceps and deltoid were taken from 5 patients with FSHD, 5 asymptomatic carriers and 5 normal controls. The genome-wide expression patterns were compared using Affymetrix U133 Plus 2.0 chips.
Transcriptional regulation differs in affected facioscapulohumeral muscular dystrophy patients compared to asymptomatic related carriers.
Sex, Age, Specimen part, Disease
View SamplesIndividuals with cystic fibrosis (CF) experience elevated inflammation in multiple organs, but whether this reflects an inherent feature of CF cells or is a consequence of a pro-inflammatory environment is not clear. Using CRISPR/Cas9-mediated mutagenesis of CFTR, 17 subclonal cell lines were generated from Caco-2 cells. Clonal lines with functional CFTR (CFTR+) were compared to those without (CFTR-) to directly address the role of CFTR in inflammatory gene regulation. All lines maintained CFTR mRNA production and formation of tight junctions. CFTR+ lines displayed short circuit currents in response to forskolin, while the CFTR- lines did not. Baseline expression of both cytokines was not different between the lines regardless of CFTR genotype. All lines responded to TNFa and IL1b by increasing IL6 and CXCL8 (IL8) mRNA levels, but the CFTR- lines produced more CXCL8 mRNA than the CFTR+ lines. Transcriptomes of 6 CFTR- and 6 CFTR+ lines, before and after stimulation by TNFa, were compared for differential expression as a function of CFTR genotype. While some genes appeared to be differentially expressed simply because of CFTR's absence, others required stimulation for differences to be apparent. Together, these data suggest cells respond to CFTR's absence by modulating transcriptional networks, some of which are only apparent when cells are exposed to different environmental contexts, such as inflammation. With regards to inflammation, these data suggest a model in which CFTR's absence leads to a poised, pro-inflammatory state of cells that is only revealed by stimulation. Overall design: Compare cells with intact CFTR to cells lacking CFTR for overall gene expression under basal and TNFa-stimulated conditions
Inactivation of CFTR by CRISPR/Cas9 alters transcriptional regulation of inflammatory pathways and other networks.
Specimen part, Treatment, Subject
View SamplesNon-steroidal anti-inflammatory drugs, principally aspirin (acetylsalicylic acid, ASA), have anti-neoplastic properties, as shown by epidemiological studies on colorectal cancer and many other types of tumours. The chemopreventive and anti-proliferative properties of aspirin towards tumour cells have been shown to be due to the induction of programmed cell death such as apoptosis. Yeast cells are among the experimental models used extensively for the study of oxidative stress and apoptosis in living organisms because yeast, such as S. cerevisiae, retains many of the core eukaryotic cellular processes, including the hallmarks of eukaryotic apoptosis. An important contribution of our previous work has been the clarification of the critical defensive role of the antioxidant mitochondrial enzyme manganese superoxide dismutase (MnSOD) against apoptosis, confirmed to be the attenuation of aspirin-induced superoxide radical accumulation in the yeast mitochondria (Farrugia et al. (2013) FEMS Yeast Res 13, 755-768). To study the possible differential expression of gene transcripts in relation to the induction of apoptosis by aspirin, we used gene expression profiling by means of GeneChip Microarray Technology (Affymetrix). The yeast strains considered for this study included (1) the wild type strain S. cerevisiae EG103, which contains both MnSOD and cytosolic copper, zinc superoxide dismutase (CuZnSOD) and (2) the redox-compromised MnSOD-deficient S. cerevisiae EG110 strain. [This work was financed by the Malta Council for Science and Technology through the R&I Technology Development Programme (Project R&I-2015-001)].
Aspirin impairs acetyl-coenzyme A metabolism in redox-compromised yeast cells.
No sample metadata fields
View Samples