This SuperSeries is composed of the SubSeries listed below.
Vitamin C supplementation modulates gene expression in peripheral blood mononuclear cells specifically upon an inflammatory stimulus: a pilot study in healthy subjects.
Specimen part
View SamplesA role of vitamin C (ascorbic acid) as an antioxidant molecule has been recognized, largely based on in vitro studies. However, more recently, the concept of antioxidant molecule has been reconsidered and its biological function is no longer considered to be simply due to its ability to act as electron donors, rather, it appears to act by modulating signaling and gene expression.
Vitamin C supplementation modulates gene expression in peripheral blood mononuclear cells specifically upon an inflammatory stimulus: a pilot study in healthy subjects.
Specimen part
View SamplesThe mammalian target of rapamycin complex 2 (mTORC2) contains the essential protein RICTOR and is activated by growth factors. mTORC2 in adipose tissue contributes to regulating glucose and lipid metabolism. In the perivascular adipose tissue (PVAT) mTORC2 ensures normal vascular reactivity by controlling expression of inflammatory molecules. To assess whether RICTOR/mTORC2 contributes to blood pressure regulation, we applied a radiotelemetry approach in control and Rictor knockout (RictoraP2KO) mice generated by using adipocyte protein-2 gene promoter-driven CRE recombinase to delete Rictor. 24 hour mean arterial pressure (MAP) was increased in RictoraP2KO mice, and the physiologic decline in MAP during the dark period impaired. In parallel, heart rate and locomotor activity were elevated during the dark period with a pattern similar to blood pressure changes. This phenotype was associated with mild cardiomyocyte hypertrophy, decreased cardiac natriuretic peptides (NPs) and NP receptor expression in adipocytes. Moreover, clock gene expression was dampened or phase-shifted in PVAT. No differences in clock gene expression were observed in the master clock suprachiasmatic nucleus (SCN), though Rictor gene expression was also lower in brain of RictoraP2KO mice. Thus, the present study underscores the importance of RICTOR/mTORC2 for interactions between vasculature, adipocytes and brain to tune physiological outcomes such as blood pressure and locomotion.
Deletion of Rictor in brain and fat alters peripheral clock gene expression and increases blood pressure.
Sex, Specimen part
View SamplesThe short-lived turquoise killifish Nothobranchius furzeri (Nfu) is a valid model for aging studies. Here, we investigated its age-associated cardiac function. We observed oxidative stress accumulation and an engagement of microRNAs (miRNAs) in the aging heart. MiRNA-sequencing of 5 week (young), 12-21 week (adult) and 28-40 week (old) Nfu hearts revealed 23 up-regulated and 18 down-regulated miRNAs with age. MiR-29 family turned out as one of the most up-regulated miRNAs during aging. MiR-29 family increase induces a decrease of known targets like collagens and DNA methyl transferases (DNMTs) paralleled by 5´methyl-cytosine (5mC) level decrease. To further investigate miR-29 family role in the fish heart we generated a transgenic zebrafish model where miR-29 was knocked-down. In this model we found significant morphological and functional cardiac alterations and an impairment of oxygen dependent pathways by transcriptome analysis leading to hypoxic marker up-regulation. To get insights the possible hypoxic regulation of miR-29 family, we exposed human cardiac fibroblasts to 1% O2 levels. In hypoxic condition we found miR-29 down-modulation responsible for the accumulation of collagens and 5mC. Overall, our data suggest that miR-29 family up-regulation might represent an endogenous mechanism aimed at ameliorating the age-dependent cardiac damage leading to hypertrophy and fibrosis. Overall design: RNA was isolated from zebrafish heart samples (3 wt and 3 miR-29-sponge) and sequenced.
Age-dependent increase of oxidative stress regulates microRNA-29 family preserving cardiac health.
Specimen part, Subject
View SamplesWe analysed whole PolyA+ RNA from human osteosarcoma U2OS cells depleted for human Cactin or transfected with a control shRNA. Overall design: Two independent shRNAs targeting human Cactin (shCac_C and shCac_D), a control shRNA (shCtrl), a single cell line (U2OS)
Human cactin interacts with DHX8 and SRRM2 to assure efficient pre-mRNA splicing and sister chromatid cohesion.
Cell line, Treatment, Subject, Time
View SamplesThese Affymetrix data were used to determine the role of each non-essential subunit of the conserved Ccr4-Not complex in the control of gene expression in the yeast S. cerevisiae. The study was performed with cells growing exponentially in high glucose and with cells grown to glucose depletion. Specific patterns of gene de-regulation were observed upon deletion of any given subunit, revealing the specificity of each subunits function. Consistently, the purification of the Ccr4-Not complex through Caf40p by tandem affinity purification from wild-type cells or cells lacking individual subunits of the Ccr4-Not complex revealed that each subunit had a particular impact on complex integrity. Furthermore, the micro-arrays revealed that the role of each subunit was specific to the growth conditions. From the study of only two different growth conditions, revealing an impact of the Ccr4-Not complex on more than 85% of all studied genes, we can infer that the Ccr4-Not complex is important for expression of most of the yeast genome.
Specific roles for the Ccr4-Not complex subunits in expression of the genome.
No sample metadata fields
View SamplesMouse ES cells were differentiated for 6 days. Undifferentiated cells (d0) were compared to cells harvested at 24 hour timepoints (d1-d6).
Transcriptional profiling of mouse and human ES cells identifies SLAIN1, a novel stem cell gene.
Age, Specimen part, Cell line, Time
View SamplesUndifferentiated cells of different passage numbers (p19 and p128) were compared to cells differentiated in hanging drops for 5 days (d5 embryoid bodies) or expanded on gelatin coated dishes for a further 9 days (d14 embryoid bodies).
Transcriptional profiling of mouse and human ES cells identifies SLAIN1, a novel stem cell gene.
Age, Specimen part, Cell line, Time
View SamplesWe used gene expression profiling to address several specific questions that arose in a study of repair of ultraviolet C radiation in C elegans, as well as to generate hypotheses regarding the possible mechanism(s) of decreased DNA repair observed in old adults in that study. This analysis was performed in order to analyze gene expression in the strain (JK1107) and experimental conditions that we used for our DNA repair studies.
Decline of nucleotide excision repair capacity in aging Caenorhabditis elegans.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Role of TAZ as mediator of Wnt signaling.
Cell line, Treatment
View Samples