github link
Accession IconGSE67077

Deletion of Rictor in brain and fat alters peripheral clock gene expression and increases blood pressure

Organism Icon Mus musculus
Sample Icon 8 Downloadable Samples
Technology Badge Icon Affymetrix Mouse Gene 1.1 ST Array (mogene11st)

Submitter Supplied Information

Description
The mammalian target of rapamycin complex 2 (mTORC2) contains the essential protein RICTOR and is activated by growth factors. mTORC2 in adipose tissue contributes to regulating glucose and lipid metabolism. In the perivascular adipose tissue (PVAT) mTORC2 ensures normal vascular reactivity by controlling expression of inflammatory molecules. To assess whether RICTOR/mTORC2 contributes to blood pressure regulation, we applied a radiotelemetry approach in control and Rictor knockout (RictoraP2KO) mice generated by using adipocyte protein-2 gene promoter-driven CRE recombinase to delete Rictor. 24 hour mean arterial pressure (MAP) was increased in RictoraP2KO mice, and the physiologic decline in MAP during the dark period impaired. In parallel, heart rate and locomotor activity were elevated during the dark period with a pattern similar to blood pressure changes. This phenotype was associated with mild cardiomyocyte hypertrophy, decreased cardiac natriuretic peptides (NPs) and NP receptor expression in adipocytes. Moreover, clock gene expression was dampened or phase-shifted in PVAT. No differences in clock gene expression were observed in the master clock suprachiasmatic nucleus (SCN), though Rictor gene expression was also lower in brain of RictoraP2KO mice. Thus, the present study underscores the importance of RICTOR/mTORC2 for interactions between vasculature, adipocytes and brain to tune physiological outcomes such as blood pressure and locomotion.
PubMed ID
Total Samples
8
Submitter’s Institution

Samples

Show of 0 Total Samples
Filter
Add/Remove
Accession Code
Title
Sex
Specimen part
Processing Information
Additional Metadata
No rows found
Loading...