Ocular growth is regulated locally by signals produced in the retina that ultimately act on the growth of the scleral tissue. Consequently, a number of studies have investigated changes in retinal gene expression during manipulation of ocular growth in an attempt to elucidate the biochemical pathways underlying eye growth. However, due to the highly heterogenous nature of the retina, important changes in gene expression can be masked. Therefore, this study has investigated changes in gene expression specifically within the retinal amacrine cell layer, the most likely generator of growth signals, during manipulations of ocular growth.
Gene expression within the amacrine cell layer of chicks after myopic and hyperopic defocus.
Specimen part
View SamplesStudy the effects of serum starvation for 24hrs on 4 cell types - TERV, TERV-ST, TERV-ST110, TERV-ASB56.
Signaling and transcriptional changes critical for transformation of human cells by simian virus 40 small tumor antigen or protein phosphatase 2A B56gamma knockdown.
Cell line
View SamplesThe objective of this experiment was to determine global gene expression change in triple negative cell line upon knockdown of TGFBR3. Genotype specific differences in expression profiles have been evaluated using human HuGene1.0-ST affymetrix array. RNA was extracted from SUM159 controls and SUM159 TGFBR3KD cells cultured in 3-dimensional in vitro system.
Transforming growth factor beta receptor type III is a tumor promoter in mesenchymal-stem like triple negative breast cancer.
Cell line
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Competition between virus-derived and endogenous small RNAs regulates gene expression in Caenorhabditis elegans.
No sample metadata fields
View SamplesAnalysis of the transcriptional response to viral infection in C.elegans.
Competition between virus-derived and endogenous small RNAs regulates gene expression in Caenorhabditis elegans.
No sample metadata fields
View SamplesAttempt to identify small non-coding RNAs that change in levels as a result of viral infection of C.elegans Overall design: Small non-coding RNA (18-30nt) was extracted from animals either infected with Orsay virus or uninfected as indicated.
Competition between virus-derived and endogenous small RNAs regulates gene expression in Caenorhabditis elegans.
Cell line, Subject
View SamplesThe transition in developmental control from maternal to zygotic gene products marks a critical step in early embryogenesis. Here, we use GRO-seq analysis to map the genome-wide RNA polymerase distribution during the Drosophila maternal to zygotic transition. This analysis unambiguously identifies the zygotic transcriptome, and provides insight into its mechanisms of regulation. Overall design: Two replicates of GRO-seq at each time point.
Extensive polymerase pausing during Drosophila axis patterning enables high-level and pliable transcription.
Specimen part, Cell line, Subject, Time
View SamplesYeast cells were grown up in SD media containing all required amino acids. Each strain set was performed in triplicate. One set had no changes, the second set had 1mM methionine supplenting the media for the duration of growth and the third set was exposed to 0.5mM hydrogen peroxide for 15 minutes prior to harvesting
Gcn4 is required for the response to peroxide stress in the yeast Saccharomyces cerevisiae.
Compound
View SamplesGlobal restriction of protein synthesis is a hallmark of cellular stress. Using hydrogen peroxide, we monitor the transcript level and also the translation status for each RNA using cycloheximide to freeze elongating ribosomes. Polyribosome fractionation of cell extracts was used to separate highly translated and poorly translated mRNAs that were then separately analysed.
Global translational responses to oxidative stress impact upon multiple levels of protein synthesis.
Sex, Compound
View SamplesWnt signaling in early eye development, specifically the lens placode shows expression of 12 out of 19 Wnt ligands. We these Wnt activities were suppressed using conditional deletion of Wntless, dramatic phenotypic changes in morphogensis occurred.
Wnt ligands from the embryonic surface ectoderm regulate 'bimetallic strip' optic cup morphogenesis in mouse.
Specimen part
View Samples