This SuperSeries is composed of the SubSeries listed below.
Age-related variations in the methylome associated with gene expression in human monocytes and T cells.
Age
View SamplesThe MESA Epigenomics and Transcriptomics Study has been launched to investigate potential gene expression regulatory methylation sites in humans by examining the association between CpG methylation and gene expression in purified human monocytes from a large study population (community-dwelling participants in the Multi-Ethnic Study of Atherosclerosis (MESA)).
Age-related variations in the methylome associated with gene expression in human monocytes and T cells.
Age
View SamplesTo assess gene expression by APOL1 genotypes in primary proximal tubule cells (PTCs), global gene expression (mRNA) levels were examined on Affymetrix HTA 2.0 arrays in primary PTCs cultured from non-diseased kidney in African Americans without CKD who underwent nephrectomy for localized renal cell carcinoma.
No associated publication
Specimen part, Race, Time
View SamplesAppendiceal cancer patients treated with cytoreductive surgery (CRS) and hyperthermic intraperitoneal chemotherapy (HIPEC) often demonstrate an unpredictable variability in survival outcomes. Biomarkers predictive of CRS/HIPEC efficacy could better guide treatment decisions. In this study we hypothesized that variation in the transcriptional programming of appendiceal tumors might distinguish molecular subtypes with differential outcomes after CRS/HIPEC. The goal of this study was to investigate the potential of a prognostic gene signature to discriminate patients with favorable and unfavorable outcomes in a discovery set of patient (the original tumor series (n=24)), and confirm its prognostic value in a second validation series (the validation cohort (n=39)).
Prognostic Molecular Subtypes of Low-Grade Cancer of the Appendix.
Sex, Age
View SamplesThis SuperSeries is composed of the SubSeries listed below.
<i>APOL1</i> Renal-Risk Variants Induce Mitochondrial Dysfunction.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
GeneChip analysis of human embryonic stem cell differentiation into hemangioblasts: an in silico dissection of mixed phenotypes.
No sample metadata fields
View SamplesTo assess differential gene expression by APOL1 renal-risk (2 risk alleles) vs. non-risk (G0G0) genotypes in primary proximal tubule cells (PTCs), global gene expression (mRNA) levels were examined on Affymetrix HTA 2.0 arrays in primary PTCs cultured from non-diseased kidney in African Americans without CKD who underwent nephrectomy for localized renal cell carcinoma.
<i>APOL1</i> Renal-Risk Variants Induce Mitochondrial Dysfunction.
Specimen part
View SamplesThe purpose of this study was to characterize the histologic development of OA in a mouse model where OA is induced by destabilization of the medial meniscus (DMM model) and to identify genes regulated during different stages of the disease, using RNA isolated from the joint organ and analyzed using microarrays.427 genes from the microarrays passed consistency and significance filters. There was an initial up-regulation at 2 and 4 weeks of genes involved in morphogenesis, differentiation, and development, including growth factor and matrix genes, as well as transcription factors including Atf2, Creb3l1, and Erg. Most genes were off or down-regulated at 8 weeks with the most highly down-regulated genes involved in cell division and the cytoskeleton. Gene expression increased at 16 weeks, in particular extracellular matrix genes including Prelp, Col3a1 and fibromodulin.The results support a phasic development of OA with early matrix remodelling and transcriptional activity followed by a more quiescent period that is not maintained.
Disease progression and phasic changes in gene expression in a mouse model of osteoarthritis.
Sex, Age, Specimen part
View SamplesDissemination of cancer stem cells (CSCs) serves as the basis of metastasis. Recently, we demonstrated that circulating prostate cancer (PCa) targets the hematopoietic stem cell (HSCs) niche in marrow during dissemination. Once in the niche, disseminated tumor cells (DTCs) may remain dormant for extended periods. As the major function of the HSC niche is to maintain stem cell functions, we hypothesized that the niche regulates CSC activities of DTCs. We show that DTCs recovered from marrow were significantly enriched for a CSC phenotype. Critically, the conversion of DTCs to CSCs is regulated by niche. The data demonstrate that the niche plays a significant role in maintaining tumor-initiating PCa in marrow and suggests a functional relationship between CSCs and dormancy. Understanding how the marrow niche regulates the conversion of DTCs to CSCs is critical for the development of therapeutics specifically targeting skeletal bone metastasis and dormancy.
The marrow niche controls the cancer stem cell phenotype of disseminated prostate cancer.
Specimen part
View SamplesTo understand the differentiation process of embryonic stem cells into hemangioblasts, gene expression profiles of ES, EB and Blast cells (BL) were analyzed.
GeneChip analysis of human embryonic stem cell differentiation into hemangioblasts: an in silico dissection of mixed phenotypes.
No sample metadata fields
View Samples