Transcription profiling of sense and antisense transcripts of 10 tissues each from human, mouse, and rat.
Conserved expression of natural antisense transcripts in mammals.
Specimen part
View SamplesTranscription profiling of sense transcripts of 10 tissues each from human, mouse, and rat.
Conserved expression of natural antisense transcripts in mammals.
Specimen part
View SamplesTranscription profiling of antisense transcripts of 10 tissues each from human, mouse, and rat.
Conserved expression of natural antisense transcripts in mammals.
Specimen part
View SamplesTwo azide mutagenized lines Freeze Resistance (FR, 75% survival) and Freeze Susceptible (FS, 30% survival) were compared with and without 4C 1.5 cold acclimation of crown tissue to identify genes responsible for the difference in freeze resistance.
Cbf genes of the Fr-A2 allele are differentially regulated between long-term cold acclimated crown tissue of freeze-resistant and - susceptible, winter wheat mutant lines.
No sample metadata fields
View SamplesFemale mouse models of diabetic peripheral neuropathy (DPN) have not yet been identified. Our aim is firstly to demonstrate that female BTBR ob/ob mice display robust DPN and secondly, to perform relevant comparisons with non-diabetic and gender-matched controls. Lastly, microarray technology was employed to identify dysregulated genes and pathways in the SCN and DRG of female BTBR mice. Dorsal root ganglia (DRG) and sciatic nerve (SCN) were removed from female mice, RNA isolated and processed for gene expression profiling to identify differentially expressed genes using Affymetrix GeneChip Mouse Genome 430 2.0 Arrays.
BTBR ob/ob mice as a novel diabetic neuropathy model: Neurological characterization and gene expression analyses.
Sex, Specimen part
View SamplesRegulation of neural stem cell (NSC) fate decisions is critical during the transition from a multicellular mammalian forebrain neuroepithelium to the multilayered neocortex. Forebrain development requires coordinated vascular investment alongside NSC differentiation. Vascular endothelial growth factor A (Vegf) has proven to be a pleiotrophic gene whose multiple protein isoforms regulate a broad range of effects in neurovascular systems. To test the hypothesis that the Vegf isoforms (120, 164, and 188) are required for normal forebrain development, we analyzed the forebrain transcriptome of mice expressing specific Vegf isoforms, Vegf120, VegfF188, or a combination of Vegf120/188. Transcriptome analysis identified differentially expressed genes in embryonic day (E) 9.5 forebrain, a time point preceding dramatic neuroepithelial expansion and vascular investment in the telencephalon. Meta-analysis identified gene pathways linked to chromosome-level modifications, cell fate regulation, and neurogenesis that were altered in Vegf isoform mice.
Shifts in the vascular endothelial growth factor isoforms result in transcriptome changes correlated with early neural stem cell proliferation and differentiation in mouse forebrain.
Specimen part
View SamplesThe immortalized human urothelial cell line, UROtsa, was transformed in six parallel cultures with continual passaging in1 M Cd+2 until the cells were able to attain the ability to form colonies in soft agar and subcutaneous tumors in nude mice. The gene expression profiles between cadmium-transformed and control samples were compared and the differentially expressed genes were identified.
Variation of keratin 7 expression and other phenotypic characteristics of independent isolates of cadmium transformed human urothelial cells (UROtsa).
Cell line
View SamplesThis work was designed to determine the role of the vascular endothelial growth factor A (VEGF) isoforms during early neuroepithelial development in the mammalian central nervous system (CNS), specifically in the forebrain. An emerging model of interdependence between neural and vascular systems includes VEGF, with its dual roles as a potent angiogenesis factor and neural regulator. Although a number of studies have implicated VEGF in CNS development, little is known about the role that the different VEGF isoforms play in early neurogenesis. We used a mouse model of disrupted VEGF isoform expression that eliminates the predominant brain isoform, VEGF164, and expresses only the diffusible form, VEGF120. We tested the hypothesis that VEGF164 plays a key role in controlling neural precursor populations in developing cortex. We used microarray analysis to compare gene expression differences between wild type and VEGF120 mice at E9.5, the primitive stem cell stage of the neuroepithelium. We quantified changes in PHH3-positive nuclei, neural stem cell markers (Pax6 and nestin) and the Tbr2-positive intermediate progenitors at E11.5 when the neural precursor population is expanding rapidly. Absence of VEGF164 (and VEGF188) leads to reduced proliferation without an apparent effect on the number of Tbr2-positive cells. There is a corresponding reduction in the number of mitotic spindles that are oriented parallel to the ventricular surface relative to those with a vertical or oblique angle. These results support a role for the VEGF isoforms in supporting the neural precursor population of the early neuroepithelium.
Vascular endothelial growth factor (VEGF) isoform regulation of early forebrain development.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Two gene co-expression modules differentiate psychotics and controls.
Sex, Age, Specimen part, Disease
View SamplesSchizophrenia (SCZ) and bipolar disorder (BD) are highly heritable psychiatric disorders. Associated genetic and gene expression
Two gene co-expression modules differentiate psychotics and controls.
Sex, Age, Specimen part, Disease
View Samples