Comparatative gene expression analysis for CD4 T cell subsets isolated from peripheral blood and palatine tonsils
A methodology for global validation of microarray experiments.
Specimen part
View SamplesMicroRNAs (miRNAs) have emerged as important gene regulators and are recognized as key players in tumorigenesis. miR-143 is reported to be down-regulated in several cancers, but knowledge of its targets in colon cancer remains limited. To investigate the role of miR-143 in colon cancer, we have employed a microarray based approach to identify miR-143 targets. Based on seed site enrichment analyses and unbiased word analyses, we found a significant enrichment of miRNA binding sites in the 3-untranslated regions (UTRs) of transcripts down-regulated upon miRNA overexpression. Here we identify Hexokinase 2 (HK2) as a direct target of miR-143 and show that re-introduction of miR-143 in the colon cancer cell line DLD-1 results in a decreased lactate secretion, indicating that miR-143 down-regulation of HK2 affects glucose metabolism in colon cancer cells.
No associated publication
Specimen part, Cell line
View SamplesAn Hodgkin Lymphoma cell line have been treated with an LNA inhibitor for miR-9 or with a scramble LNA to identify miR-9 regulated pathways that could be important for Hodgkin Lymphoma pathogenesis.
Inhibition of miR-9 de-represses HuR and DICER1 and impairs Hodgkin lymphoma tumour outgrowth in vivo.
Cell line, Treatment
View SamplesGastric cancer can be divided in two major histological subtypes: diffuse and intestinal-type adenocarcinomas. Since both types diverge in many clinical and molecular characteristics, is widely accepted that both represent distinct disease entities that may benefit from different therapeutic approaches. The diffuse type is explicitly more invasive and affected patients possess extremely poor prognosis. Gene expression profiling studies identified numerous genes with differences in mRNA expression between the two types. However, little overlap of published gene lists exists forcing the need for further and more comprehensive analyses.
THBS4, a novel stromal molecule of diffuse-type gastric adenocarcinomas, identified by transcriptome-wide expression profiling.
No sample metadata fields
View SamplesDendritic Cell differentiation - CD molecule cluster follow up: The data files associated to this experiment show the gene expression levels for a subset of 152 transcripts (out of 12626 genes represented on Affymetrix Genechip HG_U95Av2) representing CD molecules specifically expressed in Dendritic Cells (DC) as assessed by the 9 conditions tested. Another subset of genes, corresponding to a cluster of Transcription regulators is available from E-MEXP-2 experiment.
Transcriptional profiling identifies Id2 function in dendritic cell development.
Sex, Specimen part, Time
View SamplesDendritic Cell differentiation - Transcription Regulator cluster follow-up: The data files associated to this experiment show gene expression levels for a subset of 481 transcripts (out of 12626 genes represented on Affymetrix Genechip HG_U95Av2) corresponding to Transcription Regulators whose expression is changed during the differentiation process of Dendritic Cells as assessed in the 9 conditions tested. Another subset of genes, corresponding to a cluster of CD molecules is available from E-MEXP-1 experiment.
Transcriptional profiling identifies Id2 function in dendritic cell development.
Sex, Specimen part, Time
View SamplesGene expression was studied in whole kidneys in a 2 x 2 design. SBH/y were contrasted with SBN/y under basal conditions and after salt loading. Thus, four groups were studied altogether. Five rats were used in each group. Altogether, 20 animals were used, and each animal was studied separately. Gene expression was done in kidney. Differential gene expression was measured 4 weeks after initiation of salt loading. At that time point hypertension invariably evolves fully in SBH/y but not in SBN/y.<br></br><br></br>Affymetrix CHP files are available on request from arrayexpress@ebi.ac.uk
Identification of hypertension-related genes through an integrated genomic-transcriptomic approach.
Sex, Age, Specimen part, Cell line, Subject, Compound
View SamplesTranscripts of 4 groups of treated and untreated mice (TG+DO1, TG, WT+DO1 and WT) were systematically investigated. Results revealed a clear separation of data obtained from AD and non-AD brains (Figure 6A), confirming previous observations (Landel et al., 2014). Furthermore, we observed that the compound DO1 alters the transcriptional profiles in brains of 5xFAD and wild-type control mice.
No associated publication
Age, Specimen part, Treatment
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Global target mRNA specification and regulation by the RNA-binding protein ZFP36.
Cell line, Treatment
View SamplesTristetraprolin/ZFP36/TTP and ELAVL1/HuR are two disease-relevant RNA-binding proteins (RBPs) that both interact with AU-rich sequences but have antagonistic roles. While ELAVL1 binding has been profiled in several studies, the precise in vivo binding specificity of ZFP36 has not been investigated on a global scale. We determined ZFP36 binding preferences using cross-linking and immunoprecipitation in human embyonic kidney cells and examined combinatorial regulation of AU-rich elements by ZFP36 and ELAVL1. Among the targets ZFP36 binds and negatively regulates the mRNA of genes encoding proteins necessary for immune function and cancer, and other RBPs. Using partial correlation analysis, we were able to quantify the association between ZFP36 binding sites and differential target RNA abundance from ZFP36 overexpression independent of effects from confounding features, such as 3 UTR length. We identified thousands of overlapping ZFP36 and ELAVL1 binding sites, in 1,313 genes. ZFP36 preferentially interacts with and regulates AU-rich sequences while ELAVL1 prefers predominantly U- and CU-rich sequences. RNA target specificity identified by global in vivo ZFP36-mRNA interactions were quantitatively similar to previously reported in vitro binding affinities. ZFP36 and ELAVL1 both bind an overlapping spectrum of RNA sequences, yet with differential relative preferences that dictate combinatorial regulatory potential. Our findings and methodology delineate an approach to untangle the in vivo combinatorial regulation by RNA-binding proteins.
Global target mRNA specification and regulation by the RNA-binding protein ZFP36.
Cell line, Treatment
View Samples