We used microarrays to detail the global programme of gene expression underlying cellularisation and identified distinct classes of up-regulated genes in fbn5-1 T-DNA insertion Arabidopsis mutant.
No associated publication
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Jarid1b targets genes regulating development and is involved in neural differentiation.
Specimen part
View SamplesThe Polycomb group (PcG) proteins form chromatin-modifying complexes that are essential for embryonic development and stem cell renewal and are commonly deregulated in cancer. Here, we identify their target genes using genome-wide location analysis in human embryonic fibroblasts. We find that Polycomb-Repressive Complex 1 (PRC1), PRC2, and tri-methylated histone H3K27 co-occupy >1000 silenced genes with a strong functional bias for embryonic development and cell fate decisions. We functionally identify 40 genes derepressed in human embryonic fibroblasts depleted of the PRC2 components (EZH2, EED, SUZ12) and the PRC1 component, BMI-1. Interestingly, several markers of osteogenesis, adipogenesis, and chrondrogenesis are among these genes, consistent with the mesenchymal origin of fibroblasts. Using a neuronal model of differentiation, we delineate two different mechanisms for regulating PcG target genes. For genes activated during differentiation, PcGs are displaced. However, for genes repressed during differentiation, we paradoxically find that they are already bound by the PcGs in nondifferentiated cells despite being actively transcribed. Our results are consistent with the hypothesis that PcGs are part of a preprogrammed memory system established during embryogenesis marking certain key genes for repressive signals during subsequent developmental and differentiation processes.
Genome-wide mapping of Polycomb target genes unravels their roles in cell fate transitions.
No sample metadata fields
View SamplesThe H3K4me2/3 histone demethylase Jarid1b (Kdm5b/Plu1) is dispensable for embryonic stem cell (ESC) self-renewal, but essential for ESC differentiation along the neural lineage. During neural differentiation, Jarid1b depleted ESCs fail to efficiently silence lineage-inappropriate genes, specifically stem and germ cell genes. Our results delineate an essential role for Jarid1b-mediated transcriptional control during ESC differentiation.
Jarid1b targets genes regulating development and is involved in neural differentiation.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
No associated publication
No sample metadata fields
View SamplesEmbryonic development is tightly regulated by transcription factors and chromatin-associated proteins. H3K4me3 is associated with active transcription and H3K27me3 with gene repression, while the combination of both keeps genes required for development in a plastic state. Here we show that deletion of the H3K4me2/3 histone demethylase Jarid1b (Kdm5b/Plu1) results in major neonatal lethality due to respiratory failure. Jarid1b knockout embryos have several neural defects including disorganized cranial nerves, defects in eye development and increased incidences of exencephaly. Moreover, in line with an overlap of Jarid1b and Polycomb targets genes, Jarid1b knockout embryos display homeotic skeletal transformations typical for Polycomb mutants. Genome-wide analysis demonstrated that normally inactive genes encoding developmental regulators acquire aberrant H3K4me3 in early Jarid1b knockout embryos. H3K4me3 accumulates as embryonic development proceeds, leading to increased expression of neural master regulators in knockouts. Taken together, these results suggest that Jarid1b contributes to mouse development by protecting developmental genes from inappropriate acquisition of active histone modifications.
The histone demethylase Jarid1b ensures faithful mouse development by protecting developmental genes from aberrant H3K4me3.
No sample metadata fields
View SamplesOxidative stress is a common phenomenon and is linked to a wide range of diseases and pathological processes. Tissue-specific variation in redox signaling and cellular responses to oxidative stress may be associated with vulnerability to toxic agents and carcinogenic exposures. In order to provide a basis for tissue-specific difference, we examined the tissue-specific transcriptional features of 101 oxidative stress-associated genes in 10 different tissues and organs of healthy mice under physiological conditions.
Tissue-Specific Profiling of Oxidative Stress-Associated Transcriptome in a Healthy Mouse Model.
Sex
View SamplesBACKGROUND: In patients with suspicious pulmonary lesions, bronchoscopy is frequently non-diagnostic. This often results in additional invasive testing, including surgical biopsy, although many patients have benign disease. We sought to validate an airway gene-expression classifier for lung cancer in patients undergoing diagnostic bronchoscopy. METHODS: Two multicenter prospective studies (AEGIS 1 and 2) enrolled 1357 current or former smokers undergoing bronchoscopy for suspected lung cancer. Bronchial epithelial cells were collected from normal appearing mucosa in the mainstem bronchus during bronchoscopy. Patients without a definitive diagnosis from bronchoscopy were followed for 12 months. A gene-expression classifier was used to assess the risk of lung cancer, and its performance was evaluated. RESULTS: A total of 298 patients from AEGIS 1 and 341 from AEGIS 2 met criteria for analysis. Bronchoscopy was non-diagnostic for cancer in 272 of 639 patients (43%; 95%CI, 39-46%). The gene expression classifier correctly identified 431 of 487 patients with cancer (89% sensitivity; 95%CI, 85-91%), and 72 of 152 patients without cancer (47% specificity; 95%CI, 40-55%). The combination of the classifier and bronchoscopy had a sensitivity of 97% (95%CI, 95-98%), which was independent of size, location, stage, and histological subtype of lung cancer. In patients with an intermediate pre-test risk (10-60%) of lung cancer, the NPV of the classifier was 91% (95%CI 75-98%). CONCLUSIONS: In patients with an intermediate risk of lung cancer and a non-diagnostic bronchoscopy, a gene-expression classification of low-risk warrants consideration of a more conservative diagnostic approach that could reduce unnecessary invasive testing in patients with benign disease.
A Bronchial Genomic Classifier for the Diagnostic Evaluation of Lung Cancer.
Sex, Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Gene expression profiling reveals epithelial mesenchymal transition (EMT) genes can selectively differentiate eribulin sensitive breast cancer cells.
Specimen part, Cell line
View SamplesThe systematic characterization of somatic mutations in cancer genomes is essential for understanding the disease and for developing targeted therapeutics. Here we report the identification of 2,576 somatic mutations across approximately 1,800 megabases of DNA representing 1,507 coding genes from 441 tumours comprising breast, lung, ovarian and prostate cancer types and subtypes. Additionally, 373 tumors were assayed for copy number alterations via Agilent 244A CGH arrays and 153 breast, lung, and colon samples were assayed for mRNA abundance with Affymetrix HuEx1 Exon Arrays.
Diverse somatic mutation patterns and pathway alterations in human cancers.
Specimen part
View Samples