This SuperSeries is composed of the SubSeries listed below.
No associated publication
Specimen part
View SamplesMesenchymal stromal cells (MSCs) can be obtained from several sources and the significant differences in their properties, makes it crucial to investigate the differentiation potential of MSCs from different sources to determine the optimal source of MSCs. We investigated if this biological heterogeneity in MSCs from different sources results in different mechanisms for their differentiation. In this study, we compared the gene expression patterns of phenotypically defined MSCs derived from three ontogenically different sources: Embryonic stem cells (hES-MSCs), Fetal limb (Flb-MSCs) and Bone Marrow (BM-MSCs). Differentially expressed genes between differentiated cells and undifferentiated controls were compared across the three MSC sources. We found minimal overlap in differential gene expression (5-16%) among the three sources. Flb-MSCs were similar to BM-MSCs based on differential gene expression patterns. Pathway analysis of the differentially expressed genes using Ingenuity Pathway Analysis (IPA) revealed a large variation in the canonical pathways leading to MSC differentiation. The similar canonical pathways among the three sources were lineage specific. The Flb-MSCs showed maximum overlap of canonical pathways with the BM-MSCs, indicating that the Flb-MSCs is an intermediate source between the less specialised hES-MSC source and the more specialised BM-MSC source. The source specific pathways prove that MSCs from the three ontogenically different sources use different biological pathways to obtain similar differentiation outcomes. Thus our study advocates the understanding of biological pathways to obtain optimal sources of MSCs for various clinical applications.
No associated publication
Specimen part
View SamplesMesenchymal stromal cells (MSCs) can be obtained from several sources and the significant differences in their properties, makes it crucial to investigate the differentiation potential of MSCs from different sources to determine the optimal source of MSCs. We investigated if this biological heterogeneity in MSCs from different sources results in different mechanisms for their differentiation. In this study, we compared the gene expression patterns of phenotypically defined MSCs derived from three ontogenically different sources: Embryonic stem cells (hES-MSCs), Fetal limb (Flb-MSCs) and Bone Marrow (BM-MSCs). Differentially expressed genes between differentiated cells and undifferentiated controls were compared across the three MSC sources. We found minimal overlap in differential gene expression (5-16%) among the three sources. Flb-MSCs were similar to BM-MSCs based on differential gene expression patterns. Pathway analysis of the differentially expressed genes using Ingenuity Pathway Analysis (IPA) revealed a large variation in the canonical pathways leading to MSC differentiation. The similar canonical pathways among the three sources were lineage specific. The Flb-MSCs showed maximum overlap of canonical pathways with the BM-MSCs, indicating that the Flb-MSCs is an intermediate source between the less specialised hES-MSC source and the more specialised BM-MSC source. The source specific pathways prove that MSCs from the three ontogenically different sources use different biological pathways to obtain similar differentiation outcomes. Thus our study advocates the understanding of biological pathways to obtain optimal sources of MSCs for various clinical applications.
No associated publication
Specimen part
View SamplesAnalysis of different iPSC clones in comparison to parental fibroblasts and Pluripotent ESC and iPSC lines
CD44 is a negative cell surface marker for pluripotent stem cell identification during human fibroblast reprogramming.
Cell line
View SamplesGenome wide expression profiling of human NK cells stimulated with K562 erythroleukemic tumor cells after four hours of NK-tumor co-culture. Responding NK cells were compared to non-responding NK cells, delineated by display of CD107 on the NK cell surface following cytotoxic granule release. We hypothesized that tumor responses would initiate rapid changes in gene expression in the NK cell that would identify new features of the anti-tumor response of NK cells. Results identify NK cell activation responses and induction of TNF superfamily molecules with immunoregulatory activity.
Licensed human natural killer cells aid dendritic cell maturation via TNFSF14/LIGHT.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Regulation of constitutive and alternative splicing by PRMT5 reveals a role for Mdm4 pre-mRNA in sensing defects in the spliceosomal machinery.
Specimen part, Treatment
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Telomerase regulates MYC-driven oncogenesis independent of its reverse transcriptase activity.
Specimen part, Treatment
View SamplesProtein Arginine MethylTransferase 5 (PRMT5) is known to mediate epigenetic control on chromatin and to functionally regulate components of the splicing machinery. In this study we show that selective deletion of PRMT5 in different organs leads to cell cycle arrest and apoptosis. At the molecular level, PRMT5 depletion results in reduced methylation of Sm proteins, aberrant constitutive splicing and in the Alternative Splicing (AS) of specific mRNAs. We identify Mdm4 as one of these mRNAs, which due to its weak 5-Donor site, acts as a sensor of splicing defects and transduces the signal to activate the p53 response, providing a mechanistic explanation of the phenotype observed in PRMT5 conditional knockout mice. Our data demonstrate a key role of PRMT5, together with p53, as guardians of the transcriptome. This will have fundamental implications in our understanding of PRMT5 activity, both in physiological conditions, as well as pathological conditions, including cancer and neurological diseases.
Regulation of constitutive and alternative splicing by PRMT5 reveals a role for Mdm4 pre-mRNA in sensing defects in the spliceosomal machinery.
Specimen part, Treatment
View SamplesConstitutively active MYC and reactivated telomerase often co-exist in cancers. While the reactivation of telomerase is thought to be essential for replicative immortality, MYC, in conjunction with co-factors, confers several growth advantages to cancer cells. However, it is unclear which co-factors sustain elevated MYC activity in tumors . Here, we identify TERT, the catalytic subunit of telomerase, as a novel regulator of MYC stability in cancers. Binding of TERT to MYC stabilizes its levels on chromatin, contributing to either activation or repression of its target genes. Mechanistically, TERT regulates MYC ubiquitination and stability, and this effect of TERT is independent of its role on telomeres. Genetic inhibition and knocking out of TERT phenocopied the loss of MYC, resulting in reduced disease burden of early- and late-stage MYC-driven murine lymphomas. Conversly, the ectopic expression of TERT could substitute for reduced MYC in these functions. Finally we show that TERT null mice, unlike Terc null mice, show delayed onset of MYC induced lymphomagenesis. Accordingly, inhibiting TERT function in primary human leukemia cells blocked the expression of MYC targets, while Terc depletion had no effects . Based on our data, we conclude that the re-expression of TERT, a direct MYC target in tumors, provides a feed-forward mechanism to potentiate MYC-dependent oncogenesis.
Telomerase regulates MYC-driven oncogenesis independent of its reverse transcriptase activity.
Specimen part, Treatment
View SamplesSystemic hypertension increases cardiac workload and subsequently induces signaling networks in heart that underlie myocyte growth (hypertrophic response) through expansion of sarcomeres with the aim to increase contractility. However, conditions of increased workload can induce both adaptive and maladaptive growth of heart muscle. Previous studies implicate two members of the AP-1 transcription factor family, junD and fra-1, in regulation of heart growth during hypertrophic response. In this study, we investigate the function of the AP-1 transcription factors, c-jun and c-fos, in heart growth. Using pressure overload-induced cardiac hypertrophy in mice and targeted deletion of Jun or Fos in cardiomyocytes, we show that c-jun is required for adaptive cardiac hyphertrophy, while c-fos is dispensable in this context. c-jun promotes expression of sarcomere proteins and suppresses expression of extracellular matrix proteins. Capacity of cardiac muscle to contract depends on organization of principal thick and thin filaments, myosin and actin, within the sarcomere. In line with decreased expression of sarcomere-associated proteins, Jun-deficient cardiomyocytes present disarrangement of filaments in sarcomeres and actin cytoskeleton disorganization. Moreover, Jun-deficient hearts subjected to pressure overload display pronounced fibrosis and increased myocyte apoptosis finally resulting in dilated cardiomyopathy. In conclusion, c-jun but not c-fos is required to induce a transcriptional program aimed at adapting heart growth upon increased workload.
The AP-1 transcription factor c-Jun prevents stress-imposed maladaptive remodeling of the heart.
No sample metadata fields
View Samples