github link
Accession IconGSE100748

Mesenchymal Stromal Cells Derived from Human Embryonic Stem Cells, Fetal Limb and Bone Marrow Share a Common Phenotype but are Transcriptionally and Biologically Different [I]

Organism Icon Homo sapiens
Sample Icon 71 Downloadable Samples
Technology Badge IconIllumina HumanRef-8 v3.0 expression beadchip (controls added)

Submitter Supplied Information

Description
Mesenchymal stromal cells (MSCs) can be obtained from several sources and the significant differences in their properties, makes it crucial to investigate the differentiation potential of MSCs from different sources to determine the optimal source of MSCs. We investigated if this biological heterogeneity in MSCs from different sources results in different mechanisms for their differentiation. In this study, we compared the gene expression patterns of phenotypically defined MSCs derived from three ontogenically different sources: Embryonic stem cells (hES-MSCs), Fetal limb (Flb-MSCs) and Bone Marrow (BM-MSCs). Differentially expressed genes between differentiated cells and undifferentiated controls were compared across the three MSC sources. We found minimal overlap in differential gene expression (5-16%) among the three sources. Flb-MSCs were similar to BM-MSCs based on differential gene expression patterns. Pathway analysis of the differentially expressed genes using Ingenuity Pathway Analysis (IPA) revealed a large variation in the canonical pathways leading to MSC differentiation. The similar canonical pathways among the three sources were lineage specific. The Flb-MSCs showed maximum overlap of canonical pathways with the BM-MSCs, indicating that the Flb-MSCs is an intermediate source between the less specialised hES-MSC source and the more specialised BM-MSC source. The source specific pathways prove that MSCs from the three ontogenically different sources use different biological pathways to obtain similar differentiation outcomes. Thus our study advocates the understanding of biological pathways to obtain optimal sources of MSCs for various clinical applications.
PubMed ID
No associated PubMed ID
Publication Title
No associated publication
Total Samples
80
Submitter’s Institution
Authors
No associated authors

Samples

Show of 0 Total Samples
Filter
Add/Remove
Accession Code
Title
Specimen part
Processing Information
Additional Metadata
No rows found
Loading...