Sox2 is expressed by neural stem and progenitor cells, and a sox2 enhancer identifies these cells in the forebrains of both fetal and adult transgenic mouse reporters. We found that an adenovirus encoding EGFP placed under the regulatory control of a 0.4 kb sox2 core enhancer selectively identified multipotential and self-renewing neural progenitor cells in dissociates of human fetal forebrain. Gene expression analysis of E/sox2:EGFP-sorted neural progenitor cells, normalized to the unsorted forebrain dissociates from which they derived, revealed marked overexpression of genes within the notch and wnt pathways, and identified multiple elements of each pathway that appear selective to human neural progenitors.
Prospective identification, isolation, and profiling of a telomerase-expressing subpopulation of human neural stem cells, using sox2 enhancer-directed fluorescence-activated cell sorting.
Specimen part
View SamplesThis dataset contains microarray data from normal controls (aged 20-99 yrs) and Alzheimer's disease cases, from 4 brain regions: hippocampus, entorhinal cortex, superior frontal cortex, post-central gyrus. Changes in expression of synaptic and immune related genes were analyzed, investigating age-related changes and AD-related changes, and region-specific patterns of change.
Gene expression changes in the course of normal brain aging are sexually dimorphic.
Sex, Subject
View SamplesThis dataset of cognitively normal controls is a subset of the GSE48350 dataset, which additionally contains microarray data from AD brains.
Gene expression changes in the course of normal brain aging are sexually dimorphic.
Sex, Subject
View SamplesA fundamental challenge in the post-genome era is to understand and annotate the consequences of genetic variation, particularly within the context of human tissues. We describe a set of integrated experiments designed to investigate the effects of common genetic variability on DNA methylation, mRNA expression and microRNA (miRNA) expression in four distinct human brain regions. We show that brain tissues may be readily distinguished based on methylation status or expression profile. We find an abundance of genetic cis regulation mRNA expression and show for the first time abundant quantitative trait loci for DNA CpG methylation. We observe that the largest magnitude effects occur across distinct brain regions. We believe these data, which we have made publicly available, will be useful in understanding the biological effects of genetic variation.
Abundant quantitative trait loci exist for DNA methylation and gene expression in human brain.
Sex, Age, Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Identification of interactive networks of gene expression associated with osteosarcoma oncogenesis by integrated molecular profiling.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
In vitro analysis of integrated global high-resolution DNA methylation profiling with genomic imbalance and gene expression in osteosarcoma.
No sample metadata fields
View SamplesGain or loss of genes and deregulation of gene expression can result in cumulative and progressive disruptions of normal cellular functions.
Identification of interactive networks of gene expression associated with osteosarcoma oncogenesis by integrated molecular profiling.
Specimen part
View SamplesGain or loss of genes and deregulation of gene expression can result in cumulative and progressive disruptions of normal cellular functions.
In vitro analysis of integrated global high-resolution DNA methylation profiling with genomic imbalance and gene expression in osteosarcoma.
No sample metadata fields
View SamplesTo identify epigenetically silenced genes in multiple myeloma (MM) cell lines and to determine the effects of 5-aza-2-deoxycytidine and trichostatin A on gene expression. We treated 3 multiple myeloma cell lines (MM1, NCI-H929, U266) with 5-aza-2-deoxycytidine and/or trichostatin A.
Genome-wide transcriptional response to 5-aza-2'-deoxycytidine and trichostatin a in multiple myeloma cells.
Specimen part, Disease, Cell line
View SamplesBackground: Epigenetic modifications such as methylation silencing of genes with CpG-island-associated promoters is frequently observed in cancer. Studies regarding the implications of epigenetic modifications in osteosarcoma (OS) have been limited. The epigenetic drug decitabine is a potential re-activator of silenced genes through de-methylation, and is currently undergoing clinical trials for cancer treatment. No study to date has utilized decitabine to modify gene expression in OS-derived cells to identify gene-specific methylation targets that may have therapeutic importance. The objective of this study was to measure the response of the OS cell line, U-2OS, to decitabine treatment both in vitro and in vivo.
Modulation by decitabine of gene expression and growth of osteosarcoma U2OS cells in vitro and in xenografts: identification of apoptotic genes as targets for demethylation.
No sample metadata fields
View Samples