Purpose: We applied cDNA molecule counting using unique molecular identifiers combined with high-throughput sequencing to study the transcriptome of individual mouse embryonic stem cells, with spike-in controls to monitor technical performance. We further examined transcriptional noise in the embryonic stem cells. Overall design: One 96-well plate of single-stranded cDNA libraries generated from 96 single R1 mouse embryonic stem cells sequenced on two lanes, and one 96-well plate of the same libraries further amplified by 9 PCR cycles sequenced on one lane.
Quantitative single-cell RNA-seq with unique molecular identifiers.
No sample metadata fields
View SamplesWe obtained full transcriptome data from single cortical neurons after whole-cell patch-clamp recording (termed “Patch-seq”). By applying “Patch-seq” to cortical neurons, we reveal a close link between biophysical membrane properties and genes coding for neurotransmitter receptors and channels, including well-established and hitherto undescribed subtypes. Overall design: RNA sequencing was performed on a total of 83 individual cells
Integration of electrophysiological recordings with single-cell RNA-seq data identifies neuronal subtypes.
No sample metadata fields
View SamplesMicroRNAs (miRs) function primarily as post-transcriptional negative regulators of gene expression through binding to their mRNA targets. Reliable prediction of a miRs targets is a considerable bioinformatic challenge of great importance for inferring the miRs function. Sequence-based prediction algorithms have high false-positive rates, are not in agreement, and are not biological context specific. Here we introduce CoSMic (Context-Specific MicroRNA analysis), an algorithm that combines sequence-based prediction with miR and mRNA expression data. CoSMic differs from existing methodsit identifies miRs that play active roles in the specific biological system of interest and predicts with less false positives their functional targets. We applied CoSMic to search for miRs that regulate the migratory response of human mammary cells to epidermal growth factor (EGF) stimulation. Several such miRs, whose putative targets were significantly enriched by migration processes were identified. We tested three of these miRs experimentally, and showed that they indeed affected the migratory phenotype; we also tested three negative controls. In comparison to other algorithms CoSMic indeed filters out false positives and allows improved identification of context-specific targets. CoSMic can greatly facilitate miR research in general and, in particular, advance our understanding of individual miRs function in a specific context.
Context-specific microRNA analysis: identification of functional microRNAs and their mRNA targets.
Cell line
View SamplesThe transition from progenitor to differentiated cells is critical for successful organogenesis; subtle alterations in this process can lead to developmental disorders. The anterior heart field (AHF) encompasses a niche in which cardiac progenitors maintain their multipotent and undifferentiated nature by signals from the surrounding tissues, which thus far have been poorly defined. Using systems biology approaches and perturbations of signaling molecules in chick embryos, we revealed a tight crosstalk between the bone morphogenic protein (BMP) and fibroblast growth factor (FGF) signaling pathways within the AHF: BMP4 promotes myofibrillar gene expression and cardiomyocyte contractions, by blocking FGF signaling. Furthermore, inhibition of the FGF-ERK pathway is both sufficient and necessary for these processes, suggesting that FGF signaling blocks premature differentiation of cardiac progenitors in the AHF. Investigating the molecular mechanisms downstream to BMP signaling revealed that BMP4 induced a set of neural crest-related genes; including MSX1, which was sufficient to induce cardiomyocyte differentiation. We suggest that BMP and FGF signaling pathways act via inter- and intra-regulatory loops in multiple tissues, to coordinate the balance between proliferation and differentiation of cardiac progenitors.
BMP-mediated inhibition of FGF signaling promotes cardiomyocyte differentiation of anterior heart field progenitors.
No sample metadata fields
View SamplesOocyte quality is a well- established determinant of embryonic fate. However, the molecular participants and biological markers that affect and predict adequate embryonic development are largely elusive. We have previously reported that oocyte- directed Connexin 43 (Cx43) depletion leads to embryo implantation defects, although both the morphology of the oocyte and processes presiding embryo implantation appear to undergo normally. In the context of previous data determining Cx43 indispensability to oocyte and embryonic development, we show here that the timing of Cx43 depletion from the oocyte and the ovarian follicle is crucial in determining the severity of subsequent embryonic defects. Specifically, we show that the implantation defects of blastocysts resulting from oocyte- directed Cx43- depleted follicles (depletion occurs at day 3 postnatal), is not due to maternal luteal insufficiency but rather depends solely on the defective blastocysts. Gene expression microarray analysis revealed global defects in the expression of ribosomal proteins, translation initiation factors and other genes associated with cellular biosynthetic and metabolic processes in these defective oocytes and specifically blastocysts. We therefore propose that timely expression of Cx43 in the oocyte and ovarian follicles is a major determinant of oocyte developmental competence, by determining the ability of the resulting blastocyst to facilitate biomass expansion and undergo adequate embryo implantation
Blastocyst implantation failure relates to impaired translational machinery gene expression.
Specimen part
View SamplesTranscriptional responses to stimuli are regulated by tuning rates of transcript production and degradation. Here we show that stimulation-induced changes in transcript production and degradation rates can be inferred from simultaneously measured precursor mRNA (pre-mRNA) and mature mRNA profiles. Our studies on the transcriptome-wide responses to extracellular stimuli in different cellular model systems revealed hitherto unanticipated dynamics of transcript production and degradation rates. Intriguingly, genes with similar mRNA profiles often exhibit marked differences in the amplitude and onset of their production. Moreover, we identify a group of genes, which take advantage of the unexpectedly large dynamic range of production rates to expedite their induction by a transient production overshoot. These findings provide an unprecedented quantitative view on processes governing transcriptional responses, and may have broad implications for understanding their regulation at the transcriptional and post-transcriptional levels.
Coupled pre-mRNA and mRNA dynamics unveil operational strategies underlying transcriptional responses to stimuli.
Cell line, Treatment
View SamplesIn order to investigate how electrophysiological properties vary within the Pthlh population in the dorsolateral striatum we performed PatchSeq analysis of neurons labeled in 5HT3a(EGFP) and Pvalb(cre)::RCE/tdTomato mouse lines, which included Th, Npy/Mia, Cck, and Cck/Vip expressing cells. Overall design: 98 FACS-sorted single cells isolated from the dorso-lateral striatum from either a 5ht3a-EGFP mouse line or a Lhx6-cre mouse crossed onto a R26R-tdTomato reporter mouse line
Diversity of Interneurons in the Dorsal Striatum Revealed by Single-Cell RNA Sequencing and PatchSeq.
Specimen part, Cell line, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Hepatitis C Virus-Induced Upregulation of MicroRNA miR-146a-5p in Hepatocytes Promotes Viral Infection and Deregulates Metabolic Pathways Associated with Liver Disease Pathogenesis.
Cell line
View SamplesHepatitis C virus (HCV)-induced chronic liver disease is one of the leading causes of hepatocellular carcinoma (HCC). However, the molecular mechanisms underlying HCC development following chronic HCV infection remain poorly understood. MicroRNAs (miRNAs) play an important role in cellular homeostasis within the liver and deregulation of the miRNome has been associated with liver disease including HCC. While host miRNAs are essential for HCV replication, viral infection in turn appears to induce alterations of intrahepatic miRNA networks. Although the cross-talk between HCV and liver cell miRNAs most likely contributes to liver disease pathogenesis, the functional involvement of miRNAs in HCV-driven hepatocyte injury and HCC remains elusive. Here, we combined a hepatocyte-like based model system, high-throughput small RNA-sequencing, computational analysis and functional studies to investigate HCV-miRNA interactions that may contribute to liver disease and HCC. Profiling analyses indicated that HCV infection differentially regulated the expression of 72 miRNAs by at least two-fold including miRNAs that were previously described to target genes associated with inflammation, fibrosis and cancer development. Further investigation demonstrated that miR-146a-5p was consistently increased in HCV-infected hepatocyte-like cells and primary human hepatocytes as well as in liver tissues from HCV-infected patients. Genome-wide microarray and computational analyses indicated that miR-146a-5p over-expression is related to liver disease and HCC development. Furthermore, we showed that miR-146a-5p positively impacts on late steps of the viral replication cycle thereby increasing HCV infection. Collectively, our data indicate that the HCV-induced increase in miR-146a-5p expression both promotes viral infection and is relevant for pathogenesis of liver disease.
Hepatitis C Virus-Induced Upregulation of MicroRNA miR-146a-5p in Hepatocytes Promotes Viral Infection and Deregulates Metabolic Pathways Associated with Liver Disease Pathogenesis.
Cell line
View SamplesWe adopted the STRT-seq [Islam et al., Nat Methods 11, 163-166 (2013)] RNA-seq technology to a 9600-well array and applied it to analyze single cells from mouse and human cortex single cells. Overall design: 2192 single cells from mouse somatosensory cortex and 2028 single nuclei from human post-mortem middle temporal gyrus cortex.
STRT-seq-2i: dual-index 5' single cell and nucleus RNA-seq on an addressable microwell array.
No sample metadata fields
View Samples