We conclude an existence of a previously unrecognized role for estradiol in the regulation of cell development in the neonatal thymus and an organizational role for perinatal testosterone in the development of immune sexual dimorphism
Sex Differences in the Immune System Become Evident in the Perinatal Period in the Four Core Genotypes Mouse.
Specimen part
View SamplesMED1/TRAP220, a subunit of the transcriptional Mediator/TRAP complex, is crucial for various biological events through its interaction with distinct activators such as nuclear receptors and GATA family activators. In hematopoiesis, MED1 plays a pivotal role in optimal nuclear receptor-mediated myelomonopoiesis and GATA-1-induced erythropoiesis. In this study, we present evidence that MED1 in stromal cells is involved in supporting hematopoietic stem and/or progenitor cells (HSPCs) through osteopontin (OPN) expression. We found that the proliferation of bone marrow (BM) cells cocultured with MED1 knockout (Med1-/-) mouse embryonic fibroblasts (MEFs) was significantly suppressed when compared to the control. Furthermore, the number of long-term culture-initiating cells (LTC-ICs) was attenuated for BM cells cocultured with Med1-/- MEFs. The vitamin D receptor (VDR)- and Runx2-mediated expression of OPN, as well as Mediator recruitment to the Opn promoter, was specifically attenuated in the Med1-/- MEFs. Addition of OPN to these MEFs restored the growth of cocultured BM cells and the number of LTC-ICs, both of which were attenuated by the addition of the anti-OPN antibody to Med1+/+ MEFs and to BM stromal cells. Consequently, MED1 in niche appears to play an important role in supporting HSPCs, by upregulating VDR- and Runx2-mediated transcription on the Opn promoter.
The transcriptional mediator subunit MED1/TRAP220 in stromal cells is involved in hematopoietic stem/progenitor cell support through osteopontin expression.
Specimen part
View SamplesGene expression profile of squamous lung cancer cells are used to identify genes that are differentially regulated.
Interactome-transcriptome analysis reveals the high centrality of genes differentially expressed in lung cancer tissues.
No sample metadata fields
View SamplesWe found that CFIm68, a mRNA cleavage and polyadenylation factor implicated for alternative polyadenylation site choice, was co-purified with Thoc5, a component of human THO/TREX. Microarray analysis using human HeLa cells reveals knockdown of Thoc5 affects the expression of a subset of non-heat shock genes. Notably, depletion of Thoc5 attenuated the expression of the mRNAs polyadenylated at distal, but not proximal, polyadenylation sites, which phenocopied the depletion of CFIm68.
Human TREX component Thoc5 affects alternative polyadenylation site choice by recruiting mammalian cleavage factor I.
Cell line, Treatment
View SamplesBackground and Aims: Recent identification of intracellular DNA sensing pathways and involvement in numerous diverse disease processes including viral pathogenesis and autoimmunity suggests a role for these processes in liver pathology. The presence of these pathways in the liver and their role in HBV infection is unknown. Methods: In order to characterize the role of DNA sensing pathways in the liver, we utilized in vitro models. Microarray was performed on DNA treated and HBV infected hepatoma primary human hepatocytes. Results: Here we show that HBV infection and foreign DNA results in a significant innate immune response characterized by the production of inflammatory chemokines.
Hepatitis B Virus and DNA Stimulation Trigger a Rapid Innate Immune Response through NF-κB.
Specimen part, Treatment
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Tbx3-dependent amplifying stem cell progeny drives interfollicular epidermal expansion during pregnancy and regeneration.
Sex, Specimen part
View SamplesTo identify genes expressed predominantly in the ventral skin epidermal basal cells of pregnant mice, we performed DNA microarray analysis by using FACS-purified epidermal basal cells from ventral skin at 0 and 16 dpc, and dorsal skin at 16 dpc.
Tbx3-dependent amplifying stem cell progeny drives interfollicular epidermal expansion during pregnancy and regeneration.
Sex, Specimen part
View SamplesTo identify genes expressed predominantly in the ventral skin dermis of pregnant mice, we performed DNA microarray analysis by using isolated dermal tissues from ventral skin at 0 and 15 dpc, PP2-injected ventral skin at 15 dpc, and dorsal skin at 15 dpc.
Tbx3-dependent amplifying stem cell progeny drives interfollicular epidermal expansion during pregnancy and regeneration.
Sex, Specimen part
View SamplesTo understand the molecular mechanism by which regulate skeletal development, we attempted to identify transcription factors that were highly expressed in developing cartilage during the embryonic stage.
The transcription factor Foxc1 is necessary for Ihh-Gli2-regulated endochondral ossification.
Specimen part
View SamplesBBF2H7 (BBF2 human homolog on chromosome 7), an ER-resident basic leucine zipper transcription factor, is activated in response to ER stress and abundantly expresses in chondrocytes. While BBF2H7 is widely expressed in many tissues and organs, the most intense signals were detected in the proliferating zone of the cartilage. We compared gene expressions in primary cultured chondrocytes prepared from rib cartilage between WT and BBF2H7-/- mice at E18.5. Primary cultured chondrocytes were prepared from E18.5 rib cartilage of WT and BBF2H7-/- mice. Chondrocytes were isolated using 0.2% collagenase D (Roche) after adherent connective tissue was removed by 0.2% trypsin (Sigma) and collagenase pretreatment. Isolated chondrocytes were maintained in -MEM (Gibco) supplemented with 10% FCS and 50 g/mL ascorbic acid. Adenovirus vectors expressing the mouse p60 BBF2H7 (1-377 aa, BBF-N) were constructed with the AdenoX Expression system (Clontech), according to the manufacturers protocol. The cells were infected with adenoviruses 30 h before analysis.
Regulation of endoplasmic reticulum stress response by a BBF2H7-mediated Sec23a pathway is essential for chondrogenesis.
Specimen part
View Samples