We investigated the specificity profiles of a variety of RNA guided adenosine deaminases while exploring roles of NLS/NES and hyperactive mutants via analysis of the transcriptome-wide off-target A->G editing effected by these tools. To this end, HEK 293T cells were transfected with each construct and analyzed by RNA-seq. Untransfected cells were included as controls. From each sample, we collected ~40 million uniquely aligned sequencing reads. We then used Fisher's exact test to quantify significant changes in A->G editing yields, relative to untransfected cells, at each reference adenosine site having sufficient read coverage. The number of sites with at least one A->G editing event detected in any of the samples was computed. Overall design: Study of transcriptome wide A->G off-targets arising due to the overexpression of a variety of RNA guided adenosine deaminases.
In vivo RNA editing of point mutations via RNA-guided adenosine deaminases.
No sample metadata fields
View SamplesDifferent yeast strains were subjected to heat stresss; samples were collected at 0, 5, 10, 15, 20, 25 and 30 minutes after heat stress; microarray analysis were performed using the Affymetrix Y-GS98 microarray.
Revealing a signaling role of phytosphingosine-1-phosphate in yeast.
Time
View SamplesTo identify transcripts altered upon LIN-41 knockdown, we transfected either a control siRNA or one of two different LIN-41 siRNAs into human embryonic stem cells and collected total RNA 72 hours after transfection. Overall design: We compared transcript levels between control siRNA or LIN-41 siRNA treated cells.
The let-7/LIN-41 pathway regulates reprogramming to human induced pluripotent stem cells by controlling expression of prodifferentiation genes.
No sample metadata fields
View SamplesInflammation has pleiotropic effects on carcinogenesis and tumor progression. Signaling through the adaptor protein MyD88 promotes carcinogenesis in several chemically induced cancer models. Interestingly, we observed a protective role for MyD88 in the development of AOM/DSS colitis-associated cancer. The inability of Myd88-/- mice to heal ulcers generated upon injury creates an inflammatory environment that increases the frequency of mutations and results in a dramatic increase in adenoma formation and cancer progression. Susceptibility to colitis development and enhanced polyp formation were also observed in Il18-/- mice upon AOM/DSS treatment, suggesting that the phenotype of MyD88 knockouts is in part due to their inability to signal through the IL-18 receptor. This study revealed a previously unknown level of complexity surrounding MyD88 activities downstream of different receptors that differentially impact tissue homeostasis and carcinogenesis.
MyD88-mediated signaling prevents development of adenocarcinomas of the colon: role of interleukin 18.
Specimen part, Disease, Disease stage
View SamplesCells adapt to environmental changes, including fluctuations in oxygen levels, through the induction of specific gene expression programs. To identify genes regulated by hypoxia at the transcriptional level, we pulse-labeled HUVEC cells with 4-thiouridine and sequenced nascent transcripts. Then, we searched genome-wide binding profiles from the ENCODE project for factors that correlated with changes in transcription and identified binding of several components of the Sin3A co-repressor complex, including SIN3A, SAP30 and HDAC1/2, proximal to genes repressed by hypoxia. SIN3A interference revealed that it participates in the downregulation of 75% of the hypoxia-repressed genes in endothelial cells. Unexpectedly, it also blunted the induction of 47% of the upregulated genes, suggesting a role for this corepressor in gene induction. In agreement, ChIP-seq experiments showed that SIN3A preferentially localizes to the promoter region of actively transcribed genes and that SIN3A signal was enriched in hypoxia-repressed genes, prior exposure to the stimulus. Importantly, SINA3 occupancy was not altered by hypoxia in spite of changes in H3K27ac signal. In summary, our results reveal a prominent role for SIN3A in the transcriptional response to hypoxia and suggest a model where modulation of the associated histone deacetylase activity, rather than its recruitment, determines the transcriptional output. Overall design: Exponentially growing non-synchronized HUVEC were exposed to normoxia or hypoxia (21% or 1% oxygen respectively) for 8 hours and pulse-labelled with 4-thiouridine during the last two hours of treatment. RNA was extracted from samples in each condition (total RNA) and an aliquot was subjected to affinity chromatography to purify the 4-thiouridine-labelled (newly transcribed RNA, Newly Tr) and non-labelled (Pre-existent) RNA fractions. All three RNA fractions (total, newly transcribed and pre-existent) from each sample were analyzed by high-throughput sequencing. Submission includes 12 samples corresponding to 3 independent biological replicates.
The SIN3A histone deacetylase complex is required for a complete transcriptional response to hypoxia.
Cell line, Treatment, Subject
View SamplesCells adapt to environmental changes, including fluctuations in oxygen levels, through the induction of specific gene expression programs. To identify genes regulated by hypoxia at the transcriptional level, we pulse-labeled HUVEC cells with 4-thiouridine and sequenced nascent transcripts. Then, we searched genome-wide binding profiles from the ENCODE project for factors that correlated with changes in transcription and identified binding of several components of the Sin3A co-repressor complex, including SIN3A, SAP30 and HDAC1/2, proximal to genes repressed by hypoxia. SIN3A interference revealed that it participates in the downregulation of 75% of the hypoxia-repressed genes in endothelial cells. Unexpectedly, it also blunted the induction of 47% of the upregulated genes, suggesting a role for this corepressor in gene induction. In agreement, ChIP-seq experiments showed that SIN3A preferentially localizes to the promoter region of actively transcribed genes and that SIN3A signal was enriched in hypoxia-repressed genes, prior exposure to the stimulus. Importantly, SINA3 occupancy was not altered by hypoxia in spite of changes in H3K27ac signal. In summary, our results reveal a prominent role for SIN3A in the transcriptional response to hypoxia and suggest a model where modulation of the associated histone deacetylase activity, rather than its recruitment, determines the transcriptional output. Overall design: Exponentially growing non-synchronized HUVEC were transduced with lentiviral particles encoding for shRNA targeting EPAS1 or control shRNA. 72h after infection, cells were exposed to normoxia or hypoxia (21% or 1% oxygen respectively) for 8 hours and pulse-labelled with 4-thiouridine during the last two hours of treatment. RNA was extracted from samples in each condition (total RNA) and an aliquot subjected to affinity chromatography to purify the 4-thiouridine-labelled RNA fraction (newly transcribed RNA, Newly Tr). Both RNA fractions from each condition were analyzed by high-throughput sequencing. Data includes 8 samples from a single biological replicate.
The SIN3A histone deacetylase complex is required for a complete transcriptional response to hypoxia.
Cell line, Subject
View SamplesInhibition of mTOR signaling using the rapalog everolimus is an FDA-approved targeted therapy for patients with lung and gastroenteropancreatic neuroendocrine tumors (NET). However, patients eventually progress on treatment, highlighting the need for additional therapies. We focused on pancreatic NETs (pNETs) and reasoned that treatment of these tumors upon progression on rapalog therapy, with an mTOR kinase inhibitor (mTORKi) such as CC-223 could overcome a number of resistance mechanisms in tumors and delay cardiac carcinoid disease. We performed preclinical studies using human pNET cells in vitro and injected them subcutaneously or orthotopically to determine tumor progression and cardiac function in mice treated with either rapamycin alone or switched to CC-223 upon progression. Detailed signaling and RNA sequencing analyses were performed on tumors that were sensitive or progressed on mTOR treatment. Approximately 57% of mice bearing pNET tumors which progressed on rapalog therapy showed a significant decrease in tumor volume upon a switch to CC-223. Moreover, mice treated with an mTORKi exhibited decreased cardiac dilation and thickening of heart valves than those treated with placebo or rapamycin alone. In conclusion, in the majority of pNETs that progress on rapalogs, it is possible to reduce disease progression using an mTORKi, such as CC-223. Moreover, CC-223 had an additional transient cardiac benefit on valvular fibrosis compared to placebo- or rapalog-treated mice. These results provide the preclinical rationale to further develop mTORKi clinically upon progression on rapalog therapy and to further test their long term cardioprotective benefit in those NET patients prone to carcinoid syndrome. Overall design: We performed RNA sequencing analyses as an unbiased means to assess changes in gene expression. Our major goal was to identify the differences in tumor mRNAs between the CC-223- and non-CC-223 responders compared to the rapamycin alone treatment arm (Fig 5A in Orr-Asman et al manuscript). The analysis was conducted using 1 tumor each from 13 and 14 mice treated with rapamycin or switched to CC-223 respectively.
mTOR Kinase Inhibition Effectively Decreases Progression of a Subset of Neuroendocrine Tumors that Progress on Rapalog Therapy and Delays Cardiac Impairment.
Specimen part, Subject
View SamplesWe report that combining NGN2 programming with SMAD and WNT inhibition generates patterned induced neurons (hpiNs).Transcriptional analyses showed that hpiN cultures contained cells along a developmental continuumranging from poorly differentiated neuronal progenitors to well-differentiated, excitatory glutamatergic neurons. The most differentiated neurons could be identified using a CAMK2A::GFP reporter gene. Overall design: RNA sequencing analysis (population and single cell) over hpiNs differentiation time (D0 through D49 after induction). Two independent iPS lines, 9 time points, three replicates each.
Combining NGN2 Programming with Developmental Patterning Generates Human Excitatory Neurons with NMDAR-Mediated Synaptic Transmission.
Specimen part, Disease, Cell line, Subject, Time
View SamplesPurpose: Marked extracellular matrix (ECM) remodeling occurs in the human optic nerve head in primary open angle glaucoma (POAG). The glial fibrillary acid protein (GFAP) negative lamina cribrosa cell may play an important role in this remodeling process. The authors report the first study of global and ECM-focused gene transcription differentials between GFAP-negative negative lamina cribrosa (LC) cells from normal and POAG human donors. Methods: GFAP-negative LC cell lines were generated from the optic nerve tissue of three normal (n=3) and three POAG (n=3) human donors. Using Affymetrix U133A arrays the transcriptional profile between the normal and diseased groups were compared. Bioinformatic analysis was carried out using robust multichip average (RMA Express) and EASE/David. Real time TaqMan PCR and immunohistochemistry analyses were performed to validate the microarray data. Results: 285 genes were up regulated by greater than 1.5 fold and 413 were down regulated by greater than 1.5 fold in the POAG LC cells versus normal controls. Upregulated genes in POAG LC cells included, SPARC, periostin, thrombospondin, CRTL-1, CTGF and collagen types I, III, V and VIII. Downregulated ECM genes in POAG included MMP-1, fibulin, decorin and tenacsin XB. All TaqMan PCR validation assays were significant (*p<0.05) and consistent with the array data. Immunohistochemistry of one target (periostin) confirmed its differential expression at the protein level in POAG optic nerve head tissue compared with non-glaucomatous controls. Functional annotation and over-representation analysis identified ECM genes as a statistically over-represented class of genes in POAG LC cells compared with normal LC cells. Conclusions: This study reports for the first time that POAG LC cells in-vitro demonstrate up regulated ECM and pro-fibrotic gene expression compared with normal LC cells. This may be a pathological characteristic of this cell type in POAG in-vivo. We believe that the LC cell may be a pivotal regulator of optic nerve head ECM remodeling and an attractive target for future therapeutic strategies in POAG.
Differential global and extra-cellular matrix focused gene expression patterns between normal and glaucomatous human lamina cribrosa cells.
No sample metadata fields
View SamplesDysfunction of the cystic fibrosis transmembrane regulator (CFTR) in cystic fibrosis (CF) results in exaggerated and chronic inflammation as well as increased susceptibility to chronic pulmonary infections, in particular with Pseudomonas aeruginosa. Based on the concept that host immune responses do not seem to be adequate to eradicate P.aeruginosa from the lungs of CF patients and that dendritic cells (DC) play an important role in initiating and shaping adaptive immune responses, this study analyzed the role of CFTR in bone marrow-derived murine DC from CFTR knockout (CF) mice with and without exposure to P.aeruginosa. DC expressed CFTR mRNA and protein, although at much lower levels compared to whole lung. Microarray analysis of gene expression levels in DC generated from CF and wild type (WT) mice revealed significantly different expression of 16 genes in CF DC compared to WT DC. Among the genes with lower expression in CF DC was Caveolin-1, a membrane lipid raft protein. Messenger RNA and protein levels of Caveolin-1 were decreased in the CF DC compared to WT DC. Consistently, the active form of sterol-responsive element binding protein (SREBP), a negative regulator of Caveolin-1 expression, was increased in CF DC. Following exposure to P.aeruginosa, gene expression levels in CF and WT DC changed for 912 genes involved in inflammation, chemotaxis, signaling, cell cycling and apoptosis more than 1.5-fold. Among the genes that showed a different response between WT and CF DC infected with P.aeruginosa, were 3-hydroxysterol-7 reductase (Dhcr7) and stearoyl-CoA desaturase 2 (Scd2), two enzymes involved in the lipid metabolism that are also regulated by SREBP. These results suggest that CFTR dysfunction in non-epithelial cells results in changes in the expression of genes encoding factors involved in membrane structure and lipid-metabolism. These membrane alterations in immune cells may contribute to the abnormal inflammatory and immune response characteristic of CF.
Influence of the cystic fibrosis transmembrane conductance regulator on expression of lipid metabolism-related genes in dendritic cells.
No sample metadata fields
View Samples