This SuperSeries is composed of the SubSeries listed below.
The transcriptional coregulator MAML1 affects DNA methylation and gene expression patterns in human embryonic kidney cells.
Cell line, Treatment
View SamplesMastermind-like 1 (MAML1) is a transcriptional coregulator that has been associated with early development of many systems such as neuronal, muscular, cardiovascular and urogenital. The present study aimed to explore the genome-wide effects of MAML1 on gene expression and DNA methylation in human embryonic kidney cells. RNA expression was measured using a microarray that screens approximately 36,000 transcripts, and DNA methylation was determined for 450,000 CpG sites. 225 genes were found to be differentially expressed, while 11802 CpG sites were found to be differentially methylated in MAML1-expressing cells. A subset of 211 differentially methylated loci was associated with the expression of 85 genes. Gene ontology analysis revealed that these genes are involved in the regulation of urogenital system development, cell adhesion and embryogenesis.
The transcriptional coregulator MAML1 affects DNA methylation and gene expression patterns in human embryonic kidney cells.
Cell line, Treatment
View SamplesThe aim of this study was to explore what molecular and cellular processes predicate the conversion from insulitis to diabetes. The transcriptional profiles of CD45+ immune cells collected from pancreas of a cohort of age-matched female mice, which were scanned by MRI to determine the risk of diabetes development.
Early window of diabetes determinism in NOD mice, dependent on the complement receptor CRIg, identified by noninvasive imaging.
Sex, Age, Specimen part
View SamplesGene expression was compared between E18.5 E-cadherin conditional knockout (cKO) small intestine and E18.5 control mouse small intestine.
E-cadherin is required for intestinal morphogenesis in the mouse.
Specimen part
View SamplesWe studied the changes that occur in gene transcription during seasonal senescence in Populus trichocarpa pioneer leaves and fine roots. Plant senescence is a strictly regulated physiological process that allows relocating of valuable nutrients from senescent tissues before death. It might be induced by internal or external factors and among them, phytohormones play an undoubtedly significant role. Senescence was extensively studied in leaves, but the aging of other ephemeral organs, located underground, and its drivers are still poorly understood. We focused on collective results to fill in the knowledge gap about senescence of fine, absorptive roots and leaves in order to check if there are universal mechanisms involved during plant organ senescence. Transcriptional profiling was conducted with the use of microarrays to identify genes involved in developmental PCD. Samples were collected three times during a growth season. The first collection was considered as a control and was collected in early summer (July 7–15) when leaves and the root system were fully developed and functional. The second group of leaf and root samples were harvested in early autumn (October 1–7) when chlorophyll levels in leaves had decreased by approximately 40% and when fine roots had changed in color from white to brown. The third group of samples were harvested in the middle of autumn (November 2–9) when chlorophyll levels in leaves decreased by approximately 65% and fine roots were dark brown or black color. Our results reveal the important role of phytohormones in regulating the senescence of both studied organs. The transcriptomic analyses showed significant changes in gene expression that are associated with phytohormones, especially with ABA and jasmonates. We conclude that phytohormonal regulation of senescence in roots and leaves is organ-specific. In roots, phytohormones are involved indirectly in regulation of senescence by increasing tolerance for cold or resistance for pathogens, whereas such correlation was not observed in leaves.
Allies or Enemies: The Role of Reactive Oxygen Species in Developmental Processes of Black Cottonwood (<i>Populus trichocarpa</i>).
Specimen part
View SamplesHTETOP cells, derived from the human fibrosarcoma cell line HT1080, express human topoisomearse II (TOP2A) exclusively from a tetracycline (TET)-regulated transgene, we used HTETOP cells to differentiate between TOP2A-dependent and independent apoptotic effects of doxorubicin and dexrazoxane.
Topoisomerase II{alpha}-dependent and -independent apoptotic effects of dexrazoxane and doxorubicin.
Cell line
View SamplesIn order to understand the effect of genetic background on the response to gene dose perturbation, we performed mRNA transcriptional profiling on 99 hemizygotic lines (Df/+) from the DrosDel project, which have hybrid genetic background of OregonR/w1118. Overall design: We performed RNA-Seq analysis of 417 single adult flies in duplicate or triplicate. Flies are from 73 different genotypes. Differential gene expression was analyzed separately for each sex, gene expression from each genotype was compared to normalized mean of gene expression remaining 72 genotypes.
Dosage-Dependent Expression Variation Suppressed on the <i>Drosophila</i> Male <i>X</i> Chromosome.
Sex, Subject
View SamplesWe performed mRNA transcriptional profiling on 99 hemizygotic lines (Df/+) from the DrosDel project covering 68% of chromosome 2L, in order to understand how changes in gene copy number affect overall transcriptome. Overall design: We performed RNA-Seq analysis on 396 pools of 15-25 adult flies each. Samples include males or females from 99 different genotypes in duplicate. Differential gene expression was analyzed separately for each sex, by comparing each genotype with the remaining 98.
Dosage-Dependent Expression Variation Suppressed on the <i>Drosophila</i> Male <i>X</i> Chromosome.
Sex, Specimen part, Subject
View SamplesTo measure the response to gene dose, we performed mRNA-Seq of fly heads with molecularly defined deletions constructed from DrosDel deficiency lines (Ryder et al. Genetics 2007, 177(1):615-29) on the Illumina HiSeq 2000 platform. Overall design: We performed single-end next-generation sequencing (RNA-Seq) on poly-A+ RNA extracted from adult female and male heads in biological triplicate. Besides wildtype females (XX) and males (XY) that were heterozygous for deletions, we also sequenced females that were transformed into males (XX males) by using mutations in the sex determination gene transformer-2 (tra2). The original lines with deletions, including 22 deletions on the chromosome X and 12 deletions on the chromosome 3L, were from the DrosDel project. The diploid controls without DrosDel deletions were derived from w1118 (the parental line of DrosDel stocks) or Oregon-R Strain. We sequenced a total of 249 samples.
Dosage-Dependent Expression Variation Suppressed on the <i>Drosophila</i> Male <i>X</i> Chromosome.
Sex, Subject
View SamplesWe used microarrays to assess gene expression profiling of 6 patients with a mutation (Arg1174Gln) in the tyrosine kinase domain of the insulin receptor gene (INSR) and 10 matched healthy controls
A PGC-1α- and muscle fibre type-related decrease in markers of mitochondrial oxidative metabolism in skeletal muscle of humans with inherited insulin resistance.
Specimen part
View Samples