Invasion of cytotrophoblasts into uterine tissues is essential for placental development. To identify molecules regulating trophoblast invasion, mRNA signatures of purified villous (CTB, poor invasiveness) and extravillous (EVT, high invasiveness) trophoblasts isolated from first trimester human placentae and villous explant cultures, respectively, were compared using GeneChip analyses yielding 991 invasion/migration related transcripts. Several genes involved in physiological and pathologic cell invasion, including ADAM-12,-19,-28 as well as Spondin-2, were upregulated in EVT. Pathway prediction analyses identified several functional modules associated with either the invasive or the non-invasive trophoblast phenotype. One of the genes which were downregulated in the invasive mRNA pool, heme oxygenase-1 (HO-1), was selected for functional analyses. Real-time PCR analyses, Western blottting, and immunofluorescene of first trimester placentae and differentiating villous explant cultures demonstrated downregulation of HO-1 in invasive EVT as compared to CTB. Modulation of HO-1 expression in loss-of as well as gain-of function cell models (BeWo and HTR8/SVneo, respectively) demonstrated an inverse relationship of HO-1 expression with trophoblast migration in transwell and wound healing assays. Importantly, HO-1 expression led to an increase in protein levels and activity of the nuclear hormone receptor PPARgamma. Pharmacological inhibition of PPARgamma abrogated the inhibitory effects of HO-1 on trophoblast migration. Collectively, our results demonstrate that gene expression profiling of EVT and CTB can be used to unravel novel regulators of cell invasion. Accordingly, we identify heme oxygenase-1 as a negative regulator of trophoblast motility acting via upregulation of PPARgamma.
Identification of novel trophoblast invasion-related genes: heme oxygenase-1 controls motility via peroxisome proliferator-activated receptor gamma.
No sample metadata fields
View SamplesSummary: Activation of the evolutionarily conserved, developmental Wnt pathway has been reported during maladaptive cardiac remodeling. Although the function of Wnt-transcriptional activation in development is well described, the consequences of Wnt pathway activation, as well as its cardiac-specific regulatory role in the adult heart, is largely unknown. We show that ß-catenin and Transcription factor 7-like 2 (TCF7L2), the main nuclear components of the Wnt-transcriptional cascade, and their transcriptional activity are increased upon pathological remodeling in both murine and human hearts. To understand the consequences of increased Wnt signaling pathway activity, we utilized an in vivo mouse model in which ß-catenin is acutely stabilized in adult cardiomyocytes (CM), leading to increased ventricular TCF7L2 expression and activation of its target genes. Mice with stabilized ß-catenin displayed cardiac hypertrophy, increased mortality, reduced cardiac function and altered calcium homeostasis, similar to experimentally induced hypertrophy. Moreover, we observed a re-activation of Wnt-dependent developmental gene programs including activation of the Wnt/ß-catenin-independent pathway, increased CM cell cycling with poly-nucleation and cytoskeletal disorganization, underscoring a central role in adult tissue remodeling. By integrating transcriptome analyses and genome-wide occupancy (ChIP-seq) of the endogenous ventricular TCF7L2, we show that upon aberrant Wnt activation, TCF7L2 induces context and Wnt-specific gene regulation in pathological remodeling. Interestingly, ß-catenin stabilized ventricles showed increased histone H3 lysine 27 acetylation (H3K27ac) and TCF7L2 recruitment to novel disease-associated gene-specific enhancers. Importantly, using integrative motif analyses and experimental evidences, our data uncovered a role for GATA4 as a cardiogenic regulator of TCF7L2/ß-catenin complex and established a paradigm for cell-specific effects of Wnt signaling. Altogether, our studies unraveled the nuclear Wnt-TCF7L2-associated chromatin landscape and its role in adult tissue remodeling leading to heart failure. Purpose: The aim of this study was to compare transcriptome profiles (RNA-seq) of normal (containing a Cre recombinase positive locus- Cre "positive" control with a WT ß-catenin locus; to eliminate effects of Cre-mediated cardiac toxicity) and ß-catenin stabilized murine adult cardiac ventricles. Methods: Adult cardiac tissue mRNA profiles for normal and Wnt-activated mice were obtained using deep sequencing, in triplicates, using Illumina HiSeq2000. The sequence reads that passed quality filters were analyzed at the transcript isoform level with TopHat followed by DESeq2. qPCR validation was performed using TaqMan and SYBR Green assays Conclusions: Our study represents the first detailed analysis of the processes triggered upon Wnt activation in the adult heart, which was so far, not investigated. We report that this Wnt activation in the adult heart maintains its developmental function; however due to the lack of adequate developmental plasticity in the adult heart, culminates in pathological remodeling. Overall design: Gene expression profiling from cardiac ventricles of 15 weeks-old mice with wild type and ß-catenin stabilized mice
A context-specific cardiac β-catenin and GATA4 interaction influences TCF7L2 occupancy and remodels chromatin driving disease progression in the adult heart.
Age, Cell line, Subject
View SamplesDesign: Persistent latently infected CD4+ T cells represent a major obstacle to HIV eradication. Histone deacetylase inhibitors (HDACis) are a promising activation therapy in a shock and kill strategy. However, off-target effects of HDACis on host gene expression are poorly understood in primary cells of the immune system. We hypothesized that HDACi-modulated genes would be best identified with a dose response analysis. Methods: Resting primary CD4+ T cells were treated with increasing concentrations (0.34, 1, 3, or 10 M) of the HDACi, suberoylanilide hydroxamic acid (SAHA), for 24 hours and then subjected to microarray gene expression analysis. Genes with dose-correlated expression were identified with a likelihood ratio test using Isogene GX and a subset of these genes with a consistent trend of up or downregulation at each dose of SAHA were identified as dose-responsive. Histone modifications were characterized in promoter regions of the top 6 SAHA dose-responsive genes by RT-qPCR analysis of immunopreciptated chromatin (ChIP). Results: A large number of genes were shown to be up (N=657) or down (N=725) regulated by SAHA in a dose-responsive manner (FDR p-value < 0.05 and fold change |2|). Several of these genes (CTNNAL1, DPEP2, H1F0, IRGM, PHF15, and SELL) are potential in vivo biomarkers of SAHA activity. SAHA dose-responsive gene categories included transcription factors, HIV restriction factors, histone methyltransferases, and host proteins that interact with HIV proteins or the HIV LTR. Pathway analysis suggested net downregulation of T cell activation with increasing SAHA dose. Histone acetylation was not correlated with host expression, but plausible alternative mechanisms for SAHA-modulated expression were identified. Conclusions: Numerous host genes in CD4+ T cells are modulated by SAHA in a dose-responsive manner, including genes that may negatively influence HIV activation from latency. Our study suggests that SAHA influences gene expression through a confluence of several mechanisms, including histone acetylation, histone methylation, and altered expression and activity of transcription factors.
Dose-responsive gene expression in suberoylanilide hydroxamic acid-treated resting CD4+ T cells.
Specimen part, Subject
View SamplesTemporal changes of the expression levels of the complete human transcriptome during the first 24 hours following infection of IFN-pre-treated macrophages. This approach has allowed us to identify genes involved in the IFN signaling that have an impact on HIV-1 infection of macrophages
TRAF6 and IRF7 control HIV replication in macrophages.
Specimen part, Time
View SamplesMouse strains have been identified that are resistant (i.e. DBA/2) or susceptible (i.e. C57BL/6) to infection from pathogenic fungus Coccidioides immitis. However, the genetic and immunological basis for this difference has not been fully characterized.
Factors regulated by interferon gamma and hypoxia-inducible factor 1A contribute to responses that protect mice from Coccidioides immitis infection.
Specimen part
View SamplesThis in-vitro study suggests the inflammatory environment of naive epithelial cells can induce epigenetic modulation of innate immune responses at the level of histone methylation and potentially lead to long-term impacts on anti-viral immunity.
IFN-γ Influences Epithelial Antiviral Responses via Histone Methylation of the RIG-I Promoter.
Cell line, Treatment
View SamplesManagement of severe asthma remains a challenge despite treatment with glucocorticosteroid therapy. The majority of studies investigating disease mechanisms in treatment-resistant severe asthma have previously focused on the large central airways, with very few utilizing transcriptomic approaches. The small peripheral airways, which comprise the majority of the airway surface area, remain an unexplored area in severe asthma and were targeted for global epithelial gene expression profiling in this study.
Altered Epithelial Gene Expression in Peripheral Airways of Severe Asthma.
Sex, Age, Specimen part, Disease, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Gene networks specific for innate immunity define post-traumatic stress disorder.
Specimen part, Subject, Time
View SamplesThe molecular factors involved in the development of Post-Traumatic Stress Disorder (PTSD) remain poorly understood. Previous transcriptomic studies investigating the mechanisms of PTSD apply targeted approaches to identify individual genes under a cross-sectional framework lack a holistic view of the behaviours and properties of these genes at the system-level. Here we sought to apply an unsupervised gene-network based approach to a prospective experimental design using whole-transcriptome RNA-Seq gene expression from peripheral blood leukocytes of U.S. Marines (N=188), obtained both pre- and post-deployment to conflict zones. We identified discrete groups of co-regulated genes (i.e., co-expression modules) and tested them for association to PTSD. We identified one module at both pre- and post-deployment containing putative causal signatures for PTSD development displaying an over-expression of genes enriched for functions of innate-immune response and interferon signalling (Type-I and Type-II). Importantly, these results were replicated in a second non-overlapping independent dataset of U.S. Marines (N=96), further outlining the role of innate immune and interferon signalling genes within co-expression modules to explain at least part of the causal pathophysiology for PTSD development. A second module, consequential of trauma exposure, contained PTSD resiliency signatures and an over-expression of genes involved in hemostasis and wound responsiveness suggesting that chronic levels of stress impair proper wound healing during/after exposure to the battlefield while highlighting the role of the hemostatic system as a clinical indicator of chronic-based stress. These findings provide novel insights for early preventative measures and advanced PTSD detection, which may lead to interventions that delay or perhaps abrogate the development of PTSD. We used RNA-Sequencing gene expression to characterize both prognostic and diagnostic molecular signatures associated to PTSD risk and PTSD status compared to control subjects. Overall design: Peripheral blood luekocytes gene expression was subject to transcriptional analysis for 94 service members both prior-to and following-deployment to conflict zones. Half of the subjects returned with Post-traumatic stress disorder (PTSD), while the other half did not.
Gene networks specific for innate immunity define post-traumatic stress disorder.
No sample metadata fields
View SamplesAsthma arises from the complex interplay of inflammatory pathways in diverse cell types and tissues including epithelial and T cells.
Multitissue Transcriptomics Delineates the Diversity of Airway T Cell Functions in Asthma.
Sex, Subject
View Samples