we report single cell expression profiles of embryonic cells (from day 5 to 11) of pig embryo development. Overall design: single cell transcriptomes were generated from 220 cells obtained from 28 embryos (15 male and 13 female)
Pluripotency and X chromosome dynamics revealed in pig pre-gastrulating embryos by single cell analysis.
Specimen part, Subject
View SamplesWe reported the transcriptional profiles of E.coli expressing antimicrobial peptide LL37 under stress response condition. Overall design: 4 samples, two groups, one group is under aerobic condition, the other group is under anaerobic condition. One of samples is E.coli which expressed LL37 as induction in each group, another sample is E.coli with no LL37 expression in vivo as control in each group.
Effect of intracellular expression of antimicrobial peptide LL-37 on growth of escherichia coli strain TOP10 under aerobic and anaerobic conditions.
Cell line, Subject
View SamplesStudies of aging and longevity are revealing how diseases that shorten life can be controlled to improve the quality of life and lifespan itself. Two strategies under intense study to accomplish this goal are rapamycin treatment and calorie restriction. New strategies are being discovered including one that uses low-dose myriocin treatment. Myriocin inhibits the first enzyme in sphingolipid synthesis in all eukaryotes and we showed recently that low-dose myriocin treatment increases yeast lifespan at least in part by down-regulating the sphingolipid-controlled Pkh1/2-Sch9 (ortholog of mammalian S6 kinase) signaling pathway.
Reducing sphingolipid synthesis orchestrates global changes to extend yeast lifespan.
No sample metadata fields
View SamplesMYC is induced early in human adipose stem cells in response to a standard MDIR adipogenic cocktail. The objective of this experiment was to identify key gene networks impacted by MYC loss-of-function in a mixed donor pool of human derived adipose stem cells.
MYC is an early response regulator of human adipogenesis in adipose stem cells.
Sex, Race
View SamplesBoth a lack of biomarkers and relatively ineffective treatments constitute impediments to management of lupus nephritis (LN). Here we used gene expression microarrays to contrast the transcriptomic profiles of active SLE patients with and without LN to identify potential biomarkers for LN. RNA isolated from whole peripheral blood of active SLE patients was used for transcriptomic profiling and the data analyzed by linear modeling, with corrections for multiple testing. Results were validated in a second cohort of SLE patients, using NanoString technology. The majority of genes demonstrating altered mRNA abundance between patients with and without LN were neutrophil-related. Findings in the validation cohort confirmed this observation and showed that the levels of gene expression in renal remission were similar to active patients without LN. In secondary analyses, gene expression correlated with disease activity, hematuria and proteinuria, but not renal biopsy changes. As expression levels of the individual genes correlated strongly with each other, a composite neutrophil score was generated by summing all levels before examining additional correlations. There was a modest correlation between the neutrophil score and the blood neutrophil count, which was largely driven by the dose of steroids and not the proportion of low density and/or activated neutrophils. Analysis of longitudinal data revealed no correlation between baseline neutrophil score or changes over the first year of follow-up with subsequent renal flare or treatment outcomes, respectively. The findings argue that although the neutrophil score is associated with LN, its clinical utility as a biomarker may be limited.
Identification of a neutrophil-related gene expression signature that is enriched in adult systemic lupus erythematosus patients with active nephritis: Clinical/pathologic associations and etiologic mechanisms.
Sex, Age, Specimen part, Disease, Disease stage
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Cancer Cells Hijack PRC2 to Modify Multiple Cytokine Pathways.
Specimen part, Cell line, Treatment
View SamplesInflammatory bowel disease (IBD) results from a dysregulated interaction between the microbiota and a genetically susceptible host. Genetic studies have linked TNFSF15 polymorphisms and its protein TNF-like ligand 1A (TL1A) with IBD, but the functional role of TL1A in linking tissue homeostasis and intestinal inflammation is not known. Here, using cell-specific genetic deletion models, we report an essential role for CX3CR1+ mononuclear phagocyte (MNP)-derived TL1A, which is induced by adherent IBD-associated microbiota, in regulating group 3 innate lymphoid cell (ILC3) production of IL-22 and mucosal healing in acute colitis. However, in contrast to this protective role in acute colitis, TL1A-dependent expression of OX40L in MHCII+ ILC3 during colitis leads to co-stimulation of antigen-specific T cells and is required for chronic T cell colitis. These results identify a new role for ILC3 in regulating intestinal T cells and reveal a central role for TL1A in regulating ILC3 barrier immunity during colitis. Overall design: RNA from media- or TL1A-stimulated sorted Lin-CD127+IL23R-GFP+ ILC3s from IL23R-GFP/WT mice
Microbiota-Induced TNF-like Ligand 1A Drives Group 3 Innate Lymphoid Cell-Mediated Barrier Protection and Intestinal T Cell Activation during Colitis.
Specimen part, Subject
View SamplesBromodomain-containing proteins bind acetylated lysine residues on histone tails and are involved in the recruitment of additional factors that mediate histone modifications and enable transcription. A compound, I-BET-762, that inhibits binding of an acetylated histone peptide to BRD4 and other proteins of the BET (bromodomain and extra-terminal domain) family, was previously shown to suppress the production of pro-inflammatory proteins by macrophages and block acute inflammation in mice. Here we investigate the effect of I-BET-762 on T cell function. We show that treatment of nave CD4+ T cells with I-BET-762 during early differentiation modulates subsequent cytokine production, and inhibits the ability of Th1-skewed cells to induce autoimmune pathogenesis in a model of experimental autoimmune encephalomyelitis (EAE) in vivo. The suppressive effects of I-BET-762 on T-cell mediated inflammation were not due to inhibition of expression of the pro-inflammatory cytokines, IFN-. or IL-17, but correlated with the ability to suppress GM-CSF production from CNS-infiltrating T cells, resulting in decreased recruitment of macrophages and granulocytes. The effects of I-BET-762 were distinct from those of the fumarate ester, dimethyl fumarate (DMF), a candidate drug for treatment of multiple sclerosis (MS). Our data suggest that I-BET and DMF could have complementary roles in the treatment of MS, and provide a strong rationale for inhibitors of BET-family proteins in the treatment of autoimmune diseases, based on their dual ability to suppress granulocyte and macrophage recruitment by T cells as well as production of pro-inflammatory proteins by macrophages.
Selective inhibition of CD4+ T-cell cytokine production and autoimmunity by BET protein and c-Myc inhibitors.
Specimen part
View SamplesWe studied the effect of knowking down SUZ12 +/- knowckdown of BRM on the responsivness of IFNg stimulated genes. Cells were transfected with siSZU12+/-siBRM or control siRNA+/-siBRM. Cells were then left untreated or exposed to IFNg for 6 hours.
Cancer Cells Hijack PRC2 to Modify Multiple Cytokine Pathways.
Cell line
View SamplesWe studied the effect of reconstitution of BRG1 in BRG1-deficient cells on the responsivness of IFNg stimulated genes. Cells were infected with control adenovirus or BRG1-encoding virus. Cells were then left untreated or exposed to IFNg for 6 hours.
Cancer Cells Hijack PRC2 to Modify Multiple Cytokine Pathways.
Cell line
View Samples