A key requisite for the success of a dendritic cell (DC)-based vaccine in treating malignancies is the capacity of the DCs to attract immune effector cells for further interaction and activation, considering crosstalk with DCs is partially regulated by cell-contact-dependent mechanisms. Although critical for therapeutic efficacy, immune cell recruitment is a largely overlooked aspect regarding optimization of DC therapy. In this paper we examine if the so-called interleukin (IL)-15 DC vaccine provides a favorable chemokine milieu for recruiting T cells, natural killer (NK) cells and gamma delta () T cells, in comparison with the IL-4 DCs used routinely for clinical studies, as well as the underlying mechanisms of immune cell attraction by IL-15 DCs. Chemokine signaling is studied both at the RNA level, using microarray data of mature DCs, and functional level, by means of a transwell chemotaxis assay. Important to note, the classic IL-4 DC vaccine falls short to attract the required immune effector lymphocytes, whereas the IL-15 DCs provide a favorable chemokine milieu for recruiting all cytolytic effector cells. The elevated secretion of the chemokine (C-C motif) ligand 4 (CCL4), also known as macrophage inflammatory protein-1 (MIP-1), by IL-15 DCs underlies the enhanced migratory responsiveness of T cells, NK cells and T cells. Namely, neutralizing its receptor CCR5 resulted in a significant drop in migration of the aforementioned effector cells towards IL-15 DCs. These findings should be kept in mind in the design of future DC-based cancer vaccines.
Desirable cytolytic immune effector cell recruitment by interleukin-15 dendritic cells.
Specimen part, Subject
View SamplesClimate change and disease have large negative impacts on poultry production, but little is known about the interactions of responses to these stressors in chickens. Fayoumi (heat and disease resistant) and broiler (heat and disease susceptible) chicken lines were stimulated at 22 days of age, using a 2x2x2 factorial design including: breed (Fayoumi or broiler), inflammatory stimulus [lipopolysaccharide (LPS) or saline], and temperature (35°C or 25°C). Transcriptional changes in spleens were analyzed using RNA-sequencing on the Illumina HiSeq 2500. Thirty-two individual cDNA libraries were sequenced (four per treatment) and an average of 22 million reads were generated per library. Stimulation with LPS induced more differentially expressed genes (DEG, log2 fold change = 2 and FDR = 0.05) in the broiler (N=283) than the Fayoumi (N=85), whereas heat treatment resulted in fewer DEG in broiler (N=22) compared to Fayoumi (N=107). The double stimulus of LPS+heat induced the largest numbers of changes in gene expression, for which broiler had 567 DEG and Fayoumi had 1471 DEG of which 399 were shared between breeds. Further analysis of DEG revealed pathways impacted by these stressors such as Remodelling of Epithelial Adherens Junctions due to heat stress, Granulocyte Adhesion and Diapedesis due to LPS, and Hepatic Fibrosis/Hepatic Stellate Cell Activation due to LPS+heat. The genes and pathways identified provide deeper understanding of the response to the applied stressors and may serve as biomarkers for genetic selection for heat and disease tolerant chickens. Overall design: At 22 days of age, divergent chicken breeds (Fayoumi and broiler) were treated with a thermal treatment (heat stress at 35C, or thermoneutral at 25C as a control) for 3.5 hours, then stimulated subcutaneously with an inflammatory stimulus (LPS, or saline as a control) for another 3.5 hours. Chickens were euthanized and spleens were harvested. A total of 32 indivudally coded cDNA libraries were prepared using TruSeq v2 library preparation kit which selects for polyA mRNA. In this 2x2x2 full factorial design with the factors of breed, thermal treatment, and inflammatory stimulus, there were a total of 8 treatment groups. Each treatment group had a total of 4 animal biological replicates. Therefore, a total of 32 individual barcoded samples were sequenced. A total of 8 individually barcoded cDNA libraries were sequenced per lane using the HiSeq Illumina 2500, and we used 4 lanes total. Reads were mapped to Galgal 2.0.
Unique genetic responses revealed in RNA-seq of the spleen of chickens stimulated with lipopolysaccharide and short-term heat.
Subject
View SamplesWe sequenced mRNA from 6 samples of FACsorted telencephalons from E14.5 Sip1|Nkx2-1 knockout and WT|Nkx2-1 control mouse embryos to find differentially expressed genes in the absence of the transcription factor Sip1. Overall design: Examination of mRNA levels in 3 control and 3 Sip1|Nkx2-1 knockout samples
Directed migration of cortical interneurons depends on the cell-autonomous action of Sip1.
Specimen part, Cell line, Subject
View SamplesTo capture the Zeb2-dependent transcriptional changes in early cell state/fate decisions we performed RNA-seq on Zeb2 control and Zeb2 knockout cells. We chose three stages, which correspond in control ESCs to the naive pluripotent state (d0; very low amounts of Zeb2 mRNA), multipotent progenitors (d4, low Zeb2 mRNA/protein) and early neural progenitors (d6, high Zeb2 mRNA/protein), respectively. Overall design: Three biological replicates of Zeb2 control (Ctrl) and Zeb2 knockout (KO) samples on day 0, day 4 and day 6 of neural differentiation were used in this study (18 samples in total)
Zeb2 Regulates Cell Fate at the Exit from Epiblast State in Mouse Embryonic Stem Cells.
Cell line, Subject
View SamplesSaccharomyces cerevisiae flocculation occurs when fermentable sugars are limiting and is therefore considered as a way to enhance the survival chance of Flo-expressing yeast cells. In this paper, the role of Flo1p in mating was demonstrated by showing that the mating efficiency, which contributes to the increased survival rate as well by generating genetic variability, is increased when cells flocculate. This was revealed by liquid growth experiments in a low shear environment and differential transcriptome analysis of FLO1 expressing cells compared to the non-flocculent wild-type cells. The results show that a floc provides a uniquely organized multicellular ultrastructure that provides a suitable microenvironment to induce and perform cell conjugation.
Molecular mechanism of flocculation self-recognition in yeast and its role in mating and survival.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Epigenetic drug combination induces genome-wide demethylation and altered gene expression in neuro-ectodermal tumor-derived cell lines.
Sex, Specimen part, Disease, Cell line, Treatment
View SamplesAbstract: Epigenetic alterations are a fundamental aspect of cancer cells, and epigenetic drugs are currently used in clinical practice for hematological malignancies. Pediatric neuro-ectodermal tumors originate from neural crest cells and show epigenetic defects of apoptotic pathways, which makes the introduction of epigenetic drugs in this patient category logical. However, the young age of these patients is accompanied by ongoing developmental processes which are regulated epigenetic mechanisms, and prompted us to study molecular effects of nanomolar dosage epigenetic drugs in neuro-ectodermal tumor cell lines. Combination treatment of 5-aza-2`-deoxicytidine (DAC) and Trichostatin A (TSA) at nanomolar dosages resulted in wide-spread demethylating effects in 17 NBL and 5 PNET cell lines in vitro. This widespread demethylation had large effects on gene-expression profiles. In NBL cell lines, almost every cellular pathway (193/200) investigated demonstrated altered expression upon treatment, and resulted in upregulation of known epigenetically regulated genes such as X-chromosomal, tissue-specific, and a few imprinted genes. Integration analysis of CpG island methylation array data and whole genome gene expression data identified 30 genes potentially upregulated by gene promoter demethylation. Homeobox genes frequently showed demethylation in both short term (72 hours) and long term cultures (3 months) of NBL lines. Continuous treatment with epigenetic drugs resulted in low rates of proliferation. The low rate of proliferation that might explain limited consecutive demethylation upon prolonged exposure. In conclusion, genome-wide methylation and gene expression changes are induced DAC and TSA treatment at nanomolar dosages. These effects affected more than 97% of cellular pathways investigated. Further studies towards the effects of epigenetic drug combinations are advised before being applied in clinical trials for pediatric patients.
Epigenetic drug combination induces genome-wide demethylation and altered gene expression in neuro-ectodermal tumor-derived cell lines.
Sex, Specimen part, Cell line
View SamplesThe transcriptional response of Arabidopsis thaliana cell suspensions following treatment with the stress hormone methyl jasmonate (MeJA) was monitored over time 16 hours after subcultivation. Three time points were included: 30 minutes, 2 hours and 6 hours after elicitation with 50µm MeJA or DMSO as a control.
Mapping methyl jasmonate-mediated transcriptional reprogramming of metabolism and cell cycle progression in cultured Arabidopsis cells.
Compound, Time
View SamplesThe obese, insulin resistant state is characterized by impairments in lipid metabolism. Dietary polyphenols might improve these deteriorations. We have previously shown that 3-days supplementation of combined Epigallocatechin-gallate and Resveratrol (E+R) increased energy expenditure, which was accompanied by improved metabolic flexibility after a high-fat mixed-meal (HFMM) in men. The present study aimed to investigate whether these short-term effects translate into longer-term improvement of insulin sensitivity and lipid metabolism. In this randomized, double-blind study, 42 overweight subjects (21 male, 382 yrs, BMI 29.70.5 kg/m2, HOMA-IR 2.10.2) received either E+R (300 and 80 mg/d, respectively) or placebo (PLA) for 12 weeks (3 months). Before (t0) and after (t3) intervention, tissue-specific insulin sensitivity was assessed by a hyperinsulinemic-euglycemic clamp with stable isotope infusion. Fasting and postprandial (HFMM) lipid metabolism was assessed using indirect calorimetry and blood sampling. Adipose tissue and skeletal muscle lipolysis was measured using microdialysis in men and skeletal muscle biopsies were collected to assess mitochondrial function and gene expression alterations via microarray analysis. E+R supplementation increased fasting (P=0.06) and postprandial (P=0.03) fat oxidation but did not alter energy expenditure compared to PLA. This was accompanied by an E+R-induced increase in oxidative capacity in permeabilized muscle fibers (p<0.05). Moreover, E+R supplementation attenuated the increase in plasma triacylglycerol concentration that was observed in the PLA group (AUC, p<0.05), and tended to decrease visceral fat mass (P=0.09). Finally, insulin-stimulated glucose disposal and suppression of endogenous glucose production were not affected by E+R supplementation. 12 weeks E+R supplementation increased whole-body fat oxidation and skeletal muscle oxidative capacity, but this did not translate into increased tissue-specific insulin sensitivity in overweight and obese subjects.
Combined epigallocatechin-3-gallate and resveratrol supplementation for 12 wk increases mitochondrial capacity and fat oxidation, but not insulin sensitivity, in obese humans: a randomized controlled trial.
Sex, Age, Specimen part, Treatment, Time
View SamplesResveratrol is a naturally occurring compound that profoundly affects energy metabolism and mitochondrial function and serves as a calorie restriction mimetic, at least in animal models of obesity. Here we treated 10 healthy, obese men with placebo and 150 mg/day resveratrol in a randomized double-blind cross-over study for 30 days. Resveratrol supplementation significantly reduced sleeping- and resting metabolic rate. In muscle, resveratrol activated AMPK, increased SIRT1 and PGC-1alpha protein levels, increased citrate synthase activity, and improved muscle mitochondrial respiration on a fatty acid-derived substrate. Furthermore, resveratrol elevated intramyocellular lipid levels, and decreased intrahepatic lipid content, circulating glucose, triglycerides, alanine-aminotransferase, and inflammation markers. Systolic blood pressure dropped and HOMA index improved after resveratrol. In the postprandial state, adipose tissue lipolysis and plasma fatty acid and glycerol decreased. In conclusion, we demonstrate that 30 days of resveratrol supplementation induces profound metabolic changes in obese subjects, mimicking the effects of calorie restriction.
Calorie restriction-like effects of 30 days of resveratrol supplementation on energy metabolism and metabolic profile in obese humans.
Sex, Specimen part
View Samples