Exposure to aristolochic acid (AA) is linked to kidney disease and urothelial cancer in humans. The major carcinogenic component of the AA plant extract is aristolochic acid I (AAI). The transcription factor p53 acts as a tumour suppressor and is frequently mutated in AA-induced tumours. Using a mouse model, we previously showed that Trp53 genotype impacts on AAI-induced nephrotoxicity in vivo (i.e. p53 protects from AAI-induced renal proximal tubular injury), but the underlying mechanism(s) involved remain to be further explored. In the present study, we investigated the impact of p53 on AAI-induced gene expression in vivo by treating Trp53(+/+), Trp53(+/-) and Trp53(-/-) mice with 3.5 mg/kg body weight (bw) AAI daily for 6 days. The Clariom™ S Assay microarray was used to elucidate gene expression profiles in mouse kidneys after AAI treatment in order to identify potential mechanisms by which AAI drives renal injury in Trp53(-/-) kidneys. Principle component analysis and hierarchical clustering in Qlucore Omics Explorer showed that gene expression in AAI-exposed Trp53(+/+), Trp53(+/-) and Trp53(-/-) kidneys is treatment-dependent. However, gene expression profiles did not segregate in a clear-cut manner according to Trp53 genotype, hence further investigations were performed by pathway analysis with MetaCore™. Several pathways, such as those related to epithelial-to-mesenchymal transition, transcription of hypoxia-inducible factor 1 targets, renal injury and secretion of xenobiotics were significantly altered to varying degrees for AAI-exposed kidneys. The top ten up-regulated genes included cyclin-dependent kinase inhibitor 1a (Cdkn1a), a mediator of cell cycle arrest; and neutrophil gelatinase-associated lipocalin (Ngal), which has been shown to play a role in nephritis by promoting inflammation and apoptosis. Members of the solute carrier (Slc) family (i.e. Slc22a2, Slc22a6, Slc22a7, Slc22a8) were amongst the top ten down-regulated genes. Pathway analysis also identified genes that are uniquely affected by AAI treatment in Trp53(+/+), Trp53(+/-) and Trp53(-/-) kidneys. Apoptotic pathways were modulated in Trp53(+/+) kidneys; whereas oncogenic and pro-survival pathways were significantly altered for Trp53(+/-) and Trp53(-/-) kidneys, respectively. Microarray gene expression analysis identified significant toxicogenomic responses to AAI that give novel insights into its mechanism of nephrotoxicity. Alterations of biological processes by AAI in Trp53(+/+), Trp53(+/-) and Trp53(-/-) kidneys could explain the mechanisms by which p53 protects from or p53 loss drives AAI-induced renal injury in vivo.
The impact of p53 on aristolochic acid I-induced nephrotoxicity and DNA damage in vivo and in vitro.
Sex, Specimen part, Treatment
View SamplesDuplication of the genome in mammalian cells occurs in a defined temporal order referred as its replication-timing program (RT). RT is regulated in units of 400-800 Kb referred as replication domains (RDs) and changes dynamically during development. Changes in RT are generally coordinated with transcriptional competence and changes in sub-nuclear position. We generated genome-wide RT profiles for 29 distinct human cell types including embryonic stem cell (hESC)-derived, primary cells and established cell lines representing intermediate stages of endoderm, mesoderm, ectoderm and neural crest (NC) development. We identified clusters of RDs that replicate at unique times in each stage (RT signatures). Surprisingly, transcriptome data revealed that, despite an overall correlation between early replication and transcriptional activity, most genes that switched RT during differentiation can be expressed when late replicating. Intriguingly, this class of genes was nonetheless induced to high expression levels prior to a late to early RT switch and down-regulated after the switch back to late replication. These results clarify the complex relationship between transcription and RT and identify classes of genes that behave as potential drivers of the RT switch vs. those that may depend upon an RT switch for transcriptional induction.
Human stem cells from single blastomeres reveal pathways of embryonic or trophoblast fate specification.
No sample metadata fields
View SamplesSir2 is an NAD+-dependent histone deacetylase, and is the founding member of a large, phylogentically conserved, family of such deacetylases called the Sirtuins. The budding yeast, Saccharomyces cerevisiae, harbors 4 paralogs of Sir2, known as Hst1, Hst2, Hst3, and Hst4. Reducing the intracellular NAD+ concentration is inhibitory for the Sirtuins, and raising the intracellular nicotinamide (NAM) concentration is inhibitory. Microarray gene expression analysis was used to identify novel classes of yeast genes whose expression is altered when either NAD+ concentration is reduced or NAM is elevated. A subset of genes involved in thiamine biosynthesis was identified as being upregulated when Sir2 or Hst1 was inactivated.
Thiamine biosynthesis in Saccharomyces cerevisiae is regulated by the NAD+-dependent histone deacetylase Hst1.
No sample metadata fields
View SamplesThe chronological lifespan (CLS) of Saccharomyces cerevisiae is defined as the number days that non-dividing cells remain viable, typically in stationary phase cultures or in water. CLS is extended by restricting glucose in the starting cultures, and is considered a form of caloric restriction (CR). Through a previous genetic screen our lab determined that deleting components of the de novo purine biosynthesis pathway also significantly increased CLS. Significant similarities in gene expression profiles between calorie restricted WT cells and a non-restricted ade4 mutant suggested the possibility of common gene expression biomarkers of all chronologically long lived cells that could also provide insights into general mechanisms of lifespan extension. We have identified additional growth conditions that extend CLS of WT cells, including supplementation of the media with isonicotinamide (INAM), a known sirtuin activator, or by supplementation with a concentrate collected from the expired media of a calorie restricted yeast culture, presumably due to an as yet unidentified longevity factor. Using these varied methods to extend CLS, we compared gene expression profiles in the aging cells (at day 8) to identify functionally relevant biomarkers of longevity. Nineteen genes were differentially regulated in all 4 of the long-lived populations relative to wild type. Of these 19 genes, viable haploid deletion mutants were available for 16 of them, and 12 were found to have a significant impact on CLS.
Functional genomic analysis reveals overlapping and distinct features of chronologically long-lived yeast populations.
No sample metadata fields
View SampleshTERT/cdk4 immortalized myogenic human cell lines represent an important tool for skeletal muscle research, being used as therapeutically-pertinent models of various neuromuscular disorders and in numerous fundamental studies of muscle cell function. However, the cell cycle is linked to other cellular processes such as integrin regulation, the PI3K/Akt pathway, and microtubule stability, raising the question as to whether transgenic modification of the cell cycle results in secondary effects that could undermine the validity of these cell models. Here we subjected healthy and disease lines to intensive transcriptomic analysis, comparing immortalized lines with their parent primary populations in both differentiated and undifferentiated states, and testing their myogenic character by comparison with non-myogenic (CD56-negative) cells. We found that immortalization has no measurable effect on the myogenic cascade or on any other cellular processes, and that it was protective against the systems level effects of senescence that are observed at higher division counts of primary cells.
Skeletal muscle characteristics are preserved in hTERT/cdk4 human myogenic cell lines.
Specimen part, Disease, Disease stage
View SamplesAcute Lymphoblastic Leukemia (ALL) in infants (<1 year) is characterized by a poor prognosis and a high incidence of MLL translocations. Several studies demonstrated the unique gene expression profile associated with MLL-rearranged ALL, but generally small cohorts were analyzed as uniform patient groups regardless of the type of MLL translocation, while the analysis of translocation-negative infant ALL remained unacknowledged.
Gene expression profiling-based dissection of MLL translocated and MLL germline acute lymphoblastic leukemia in infants.
Sex, Age, Specimen part
View SamplesAlthough the prognosis for childhood Acute Lymphoblastic Leukemia (ALL) in general has improved tremendously over the last decades, the survival chances for infants (<1 year of age) with ALL remains poor.
Association of high-level MCL-1 expression with in vitro and in vivo prednisone resistance in MLL-rearranged infant acute lymphoblastic leukemia.
Sex, Specimen part, Disease
View SamplesWe studied the KRAS and NRAS mutational status in pediatric MLL-AF4+ leukemia patients by means of ultra deep amplicon sequencing. The gene expression profiles of RAS wild type and RAS mutated patients were investigated by gene expression analysis. We showed that mutated patients were characterized by a RAS related expression signature.
Deciphering KRAS and NRAS mutated clone dynamics in MLL-AF4 paediatric leukaemia by ultra deep sequencing analysis.
Specimen part, Disease, Disease stage, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
High expression of miR-125b-2 and SNORD116 noncoding RNA clusters characterize ERG-related B cell precursor acute lymphoblastic leukemia.
Specimen part, Disease, Disease stage
View SamplesERG-related B cell precursor acute lymphoblastic leukemia (BCP ALL) is a recently described childhood ALL subtype characterized by aberrant ERG protein expression and highly recurrent ERG intragenic deletions. Several studies reported a remarkably favourable outcome for ERG-related BCP-ALL despite a high incidence of apparently inauspicious IKZF1 aberrations. In this study we investigated by integrative genomic analysis the main features of the ERG-related group in a cohort of B-others BCP ALL patients enrolled in the AIEOP ALL 2000 therapeutic protocol. We report a specific microRNA and snoRNA signature that characterizes ERG-related patients with up-regulation of the miR-125b-2 cluster on chromosome 21 and several snoRNAs in the Prader-Willi locus at 15q11.2, including the orphan SNORD116 cluster. Given the current lack of parameters for a comprehensive classification we suggest toexploit the noncoding RNAs signature for differential diagnosis of ERG-related patients.
High expression of miR-125b-2 and SNORD116 noncoding RNA clusters characterize ERG-related B cell precursor acute lymphoblastic leukemia.
Specimen part, Disease, Disease stage
View Samples