Atrial specific knockout of Nkx2-5 results in hyperplastic atria with ASD and conduction defects. To examine how Nkx2-5 regulates cardiac proliferation at late gestational stages, RNA-seq was performed. Overall design: Examination of expression profile of 2 Nkx2-5-null atria and 3 controls
Nkx2-5 suppresses the proliferation of atrial myocytes and conduction system.
No sample metadata fields
View SamplesCardiac maturation during perinatal transition of heart is critical for functional adaptation to hemodynamic load and nutrient environment. Perturbation in this process has major implications in congenital heart defects (CHDs). Transcriptome programming during perinatal stages is important information but incomplete in current literature, particularly, the expression profiles of the long noncoding RNAs (lncRNAs) are not fully elucidated Overall design: From comprehensive analysis of transcriptomes derived from neonatal mouse heart left and right ventricles, a total of 45,167 unique transcripts were identified, including 21,916 known and 2,033 novel lncRNAs. Among these lncRNAs, 196 exhibited significant dynamic regulation along maturation process. By implementing parallel weighted gene co-expression network analysis (WGCNA) of mRNA and lncRNA datasets, several lncRNA modules coordinately expressed in a developmental manner similar to protein coding genes, while a few of them revealed chamber specific patterns. Out of 2,442 lncRNAs located within 50 KBs of protein coding genes, 11% significantly correlates with the expression of their neighboring genes. The impact of Ppp1r1b-lncRNA on the corresponding partner gene Tcap was validated in cultured myoblasts. While this concordant regulation was also conserved in human infantile hearts. Furthermore, the Ppp1r1b-lncRNA/Tcap expression ratio was identified as a molecular signature that differentiated CHD phenotypes RNA dataset: neonatal mouse heart left and right ventricles
Decoding the Long Noncoding RNA During Cardiac Maturation: A Roadmap for Functional Discovery.
Sex, Cell line, Subject
View SamplesBoth a lack of biomarkers and relatively ineffective treatments constitute impediments to management of lupus nephritis (LN). Here we used gene expression microarrays to contrast the transcriptomic profiles of active SLE patients with and without LN to identify potential biomarkers for LN. RNA isolated from whole peripheral blood of active SLE patients was used for transcriptomic profiling and the data analyzed by linear modeling, with corrections for multiple testing. Results were validated in a second cohort of SLE patients, using NanoString technology. The majority of genes demonstrating altered mRNA abundance between patients with and without LN were neutrophil-related. Findings in the validation cohort confirmed this observation and showed that the levels of gene expression in renal remission were similar to active patients without LN. In secondary analyses, gene expression correlated with disease activity, hematuria and proteinuria, but not renal biopsy changes. As expression levels of the individual genes correlated strongly with each other, a composite neutrophil score was generated by summing all levels before examining additional correlations. There was a modest correlation between the neutrophil score and the blood neutrophil count, which was largely driven by the dose of steroids and not the proportion of low density and/or activated neutrophils. Analysis of longitudinal data revealed no correlation between baseline neutrophil score or changes over the first year of follow-up with subsequent renal flare or treatment outcomes, respectively. The findings argue that although the neutrophil score is associated with LN, its clinical utility as a biomarker may be limited.
Identification of a neutrophil-related gene expression signature that is enriched in adult systemic lupus erythematosus patients with active nephritis: Clinical/pathologic associations and etiologic mechanisms.
Sex, Age, Specimen part, Disease, Disease stage
View SamplesAcquisition and maintenance of vascular smooth muscle fate is essential for the morphogenesis and function of the circulatory system. Loss of contractile properties or changes in the identity of vascular smooth muscle cells (vSMC) can result in structural alterations associated with aneurysms and vascular wall calcifications. Here we report that maturation of sclerotome-derived vSMC is dependent on a transcriptional switch between mouse embryonic days 13 and 14.5. At this time point, Jag1-mediated repression of sclerotome transcription factors Pax1, scleraxis and Sox9 is necessary to fully enable vSMC maturation. Specifically, Notch signaling in vSMC antagonizes sclerotome and cartilage transcription factors, and promotes upregulation of contractile genes. In the absence of Jag1, vSMC acquire a chondrocytic transcriptional repertoire that can lead to ossification of the vascular wall. Importantly, our findings suggest that sustained Notch signaling is essential throughout vSMC life to maintain contractile function, prevent vSMC reprogramming and promote vascular wall integrity. Overall design: mRNA profile of vSMC from the descending aorta of 14.5 embryos Wild type (WT), SMC Jag1-heterozygous (HTZ) and SMC Jag1-null (KO) was generated by deep sequencing, in duplicate.
Repression of Sox9 by Jag1 is continuously required to suppress the default chondrogenic fate of vascular smooth muscle cells.
No sample metadata fields
View SamplesAcquisition and maintenance of vascular smooth muscle fate is essential for the morphogenesis and function of the circulatory system. Loss of contractile properties or changes in the identity of vascular smooth muscle cells (vSMC) can result in structural alterations associated with aneurysms and vascular wall calcifications. Here we report that maturation of sclerotome-derived vSMC is dependent on a transcriptional switch between mouse embryonic days 13 and 14.5. At this time point, Jag1-mediated repression of sclerotome transcription factors Pax1, scleraxis and Sox9 is necessary to fully enable vSMC maturation. Specifically, Notch signaling in vSMC antagonizes sclerotome and cartilage transcription factors, and promotes upregulation of contractile genes. In the absence of Jag1, vSMC acquire a chondrocytic transcriptional repertoire that can lead to ossification of the vascular wall. Importantly, our findings suggest that sustained Notch signaling is essential throughout vSMC life to maintain contractile function, prevent vSMC reprogramming and promote vascular wall integrity. Overall design: mRNA profile of vascular Smooth Muscle Cells, isolated from the descending aorta of Immorto mouse, treated or not with gamma-secretase inhibitor was generated by deep sequencing, in triplicate.
Repression of Sox9 by Jag1 is continuously required to suppress the default chondrogenic fate of vascular smooth muscle cells.
No sample metadata fields
View SamplesSTAT5 interacts with other factors to control transcription, and the mechanism of regulation is of interest as constitutive active STAT5 has been reported in malignancies. Here LSD1 and HDAC3 were identified as novel STAT5a interacting partners in pro-B cells. Characterization of STAT5a, LSD1 and HDAC3 target genes by ChIP-seq and RNA-seq revealed gene subsets regulated by independent or combined action of the factors and LSD1/HDAC3 to play dual role in their activation or repression. Genes bound by STAT5a alone or in combination with weakly associated LSD1 or HDAC3 were enriched for the canonical STAT5a dimer motif, and such binding induced activation or repression. Strong STAT5 binding was seen more frequently in intergenic regions, which might function as distal enhancer elements. Genes bound weakly by STAT5a and strongly by LSD1/HDAC3 present a STAT5a monomer like motif, and are differentially regulated based on their biological role, genomic binding localization and affinity. STAT5a binding in monomer like motifs was found with increased frequency in promoters, indicating a requirement for stabilization by additional factors, which might recruit LSD1/HDAC3. Our study describes an interaction network of STAT5a/LSD1/HDAC3 and a dual function of LSD1/HDAC3 on STAT5-dependent transcription, defined by protein-protein interactions, genomic binding positions-affinities and motifs. Overall design: Mouse pro-B Ba/F3 cells treated with lentiviral vectors expressing short-hairpins to knock-down various genes (STAT5a, STAT5b, LSD1 and HDAC3). All KDs were analysed versus cells treated with lentiviral construct expressing a No-Target short-hairpin at the same condition (either minus [IL3 deprivation for 6h] or plus [IL3 deprivation for 6h and IL3 stimulation for 30min]). Wild-type cells were also generated and compared between the two conditions. All samples contain biological replicates (3-5 depending on the sample).
The dual role of LSD1 and HDAC3 in STAT5-dependent transcription is determined by protein interactions, binding affinities, motifs and genomic positions.
Cell line, Treatment, Subject
View SamplesRegulatory T cells (Tregs) expressing the transcription factor Foxp3 have a pivotal role in maintaining immunological self-tolerance1-5; yet, excessive Treg activities suppress anti-tumor immune responses6-8. Compared to resting phenotype Tregs (rTregs) in the secondary lymphoid organs, Tregs in non-lymphoid tissues including solid tumors exhibit an activated Treg (aTreg) phenotype9-11. However, aTreg function and whether its generation can be manipulated to promote tumor immunity without evoking autoimmunity are largely unexplored. Here we show that the transcription factor Foxo1, previously demonstrated to promote Treg suppression of lymphoproliferative diseases12,13, has an unexpected function in inhibiting aTreg-mediated immune tolerance. We found that aTregs turned over at a slower rate than rTregs, but were not locally maintained in tissues. Transcriptome analysis revealed that aTreg differentiation was associated with repression of Foxo1-dependent gene transcription, concomitant with reduced Foxo1 expression, cytoplasmic Foxo1 localization, and enhanced Foxo1 phosphorylation at sites of the Akt kinase. Treg-specific expression of an Akt-insensitive Foxo1 mutant prevented downregulation of lymphoid organ homing molecules, and impeded Treg homing to non-lymphoid organs, causing CD8+ T cell-mediated autoimmune diseases. Compared to Tregs from healthy tissues, tumor-infiltrating Tregs downregulated Foxo1 target genes more substantially. Expression of the Foxo1 mutant at a lower dose was sufficient to deplete tumor-associated Tregs, activate effector CD8+ T cells, and inhibit tumor growth without inflicting autoimmunity. Thus, Foxo1 inactivation is essential for the migration of aTregs that have a crucial function in suppressing CD8+ T cell responses; and the Foxo signaling pathway in Tregs can be titrated to preferentially break tumor immune tolerance. Overall design: Transcriptome of splenic rTreg (CD4+Foxp3+CD62LhiCD44lo) and aTreg (CD4+Foxp3+CD62LhiCD44lo) were compared. Duplicates from biologically independent animials were used.
Graded Foxo1 activity in Treg cells differentiates tumour immunity from spontaneous autoimmunity.
Specimen part, Subject
View SamplesThe Early Growth Response (Egr) family of transcription factors consists of 4 members (Egr1-4) that are expressed in a wide variety of cell types. A large body of evidence point to a role for Egr transcription factors in growth, survival, and differentiation. A major unanswered question is whether Egr transcription factors serve similar functions in diverse cell types by activating a common set of target genes. Signal transduction cascades in neurons and lymphocytes show striking parallels. Activation of either cell type activates the Ras-MAPK pathway and, in parallel, leads to increases in intracellular calcium stimulating the calcineurin-NFAT pathway. In both cell types, the strength of the activation signal affects the cellular outcomes and very strong stimuli lead to cell death. Notably both these pathways converge on the induction of Egr genes. We believe that downstream targets of Egr transcription factors in lymphocytes may also be activated by Egr factors in activated neurons. There is precedence for common target gene activation in these two cell types: apoptosis in both activated T cells and methamphetamine stimulated neurons occurs via FasL induction by NFAT transcription factors. We propose to use developing T lymphocytes (thymocytes) as a model system for discovery of Egr-dependent target genes for several reasons. First, we have observed a prominent survival defect in thymocytes from mice deficient in both Egr1 and Egr3 (1/3 DKO) and a partial differention block in the immature double negative (DN) stage. In addition, thymocytes are an easily manipulatable cell type, and the DN subpopulation affected in 1/3 DKO mice can be isolated to very high purity. We anticipate that 1/3 DKO thymocytes will provide an excellent experimental system that will provide insight into Egr-dependent transcription in neuronal development, activation, and death.
Redundant role for early growth response transcriptional regulators in thymocyte differentiation and survival.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Comparative Transcriptome Profiling Reveals Coding and Noncoding RNA Differences in NSCLC from African Americans and European Americans.
Sex, Age, Specimen part, Disease, Race, Subject
View SamplesTranslational Relevance
Comparative Transcriptome Profiling Reveals Coding and Noncoding RNA Differences in NSCLC from African Americans and European Americans.
Sex, Age, Race, Subject
View Samples