This SuperSeries is composed of the SubSeries listed below.
A common promoter hypomethylation signature in invasive breast, liver and prostate cancer cell lines reveals novel targets involved in cancer invasiveness.
Sex, Disease, Disease stage, Cell line
View SamplesCancer invasion and metastasis is the most morbid aspect of cancer and is governed by different cellular mechanisms than those driving the deregulated growth of tumors. We addressed here the question of whether a common DNA methylation signature of invasion exists in cancer cells from different origins that differentiates invasive from noninvasive cells. We identified a common DNA methylation signature consisting of hyper- and hypomethylation and determined the overlap of differences in DNA methylation with differences in mRNA expression using expression array analyses. A pathway analysis reveals that the hypomethylation signature includes some of the major pathways that were previously implicated in cancer migration and invasion such as TGF beta and ERBB2 triggered pathways. The relevance of these hypomethylation events in human tumors was validated by identification of the signature in several publicly available databases of human tumor transcriptomes. We shortlisted novel invasion promoting candidates and tested the role of four genes from the list C11orf68, G0S2, SHISA2 and TMEM156 in invasiveness using siRNA depletion. Importantly these genes are upregulated in human cancer specimens as determined by immunostaining of human normal and cancer breast, liver and prostate tissue arrays. Since these genes are activated in cancer they constitute a group of targets for specific pharmacological inhibitors of cancer invasiveness.
A common promoter hypomethylation signature in invasive breast, liver and prostate cancer cell lines reveals novel targets involved in cancer invasiveness.
Sex, Disease, Disease stage, Cell line
View SamplesFibroadenomas are the most common benign breast tumors in women under 30. Unlike their malignant counterparts, relatively molecular profiling has been done on fibroadenomas. Here we performed gene expression profiling on ten fibroadenomas in order to better characterize these tumors. Through targeted amplicon sequencing, we have found that six of these tumors have MED12 mutations. We show that the MED12 mutations, among others, are associated with activated estrogen signaling, as well as increased invasiveness through upregulation of ECM remodelling genes.
Exome sequencing identifies highly recurrent MED12 somatic mutations in breast fibroadenoma.
Age
View SamplesThis SuperSeries is composed of the SubSeries listed below.
A formalin-fixed paraffin-embedded (FFPE)-based prognostic signature to predict metastasis in clinically low risk stage I/II microsatellite stable colorectal cancer.
Sex, Age
View SamplesThis study was conducted in order to identify biomarkers for a prognostic gene expression signature for metastases in early stage CRC.
A formalin-fixed paraffin-embedded (FFPE)-based prognostic signature to predict metastasis in clinically low risk stage I/II microsatellite stable colorectal cancer.
Sex, Age
View SamplesThis analysis identified 27 genes that are induced, and 29 that are repressed, by a factor of two or more in Asr1RING mutant cells. Genes in each category did not cluster according to gene ontology or chromosome, but we did notice that 33% of genes in the induced set lie within 50 kb of a telomere. In contrast, for repressed genes, only 7% were similarly telomere-proximal. The induction of subtelomeric gene expression in Asr1RING mutant cells suggests that the Ub-ligase activity of Asr1 may be required for authentic patterns of subtelomeric gene silencing. Overall design: Transcriptome of WT and Asr1 RING mutant cells grown at log phase in enriched media.
Antagonistic roles for the ubiquitin ligase Asr1 and the ubiquitin-specific protease Ubp3 in subtelomeric gene silencing.
Subject
View SamplesTumors of advanced gastric cancer patients were biopsied and subjected to gene expression profiling using the Affymetrix Human Genome U133 Plus 2.0 Arrays. Patients were then segregated into G1, G2 or G3 groups based on their tumor genomic profiles. Patients in the G1 and G3 cohorts were assigned SOX (oxaliplatin plus S-1) chemotherapy whereas those in the G2 cohort were given SP (cisplatin plus S-1) regimen.
Real-Time Tumor Gene Expression Profiling to Direct Gastric Cancer Chemotherapy: Proof-of-Concept "3G" Trial.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
ST3GAL1-Associated Transcriptomic Program in Glioblastoma Tumor Growth, Invasion, and Prognosis.
Disease stage
View SamplesCell surface sialylation confers many roles in cancer biology including cell proliferation, invasiveness, metastasis and angiogenesis. We show here that ST3Gal1 sialyltransferase marks a self-renewing cellular fraction. Depletion of ST3GAL1 abrogates glioma cell growth and tumorigenicity. In contrast, TGFb induces ST3GAL1 expression and correlates with the pattern of ST3Gal1 activation in patient tumors of the mesenchymal molecular subtype. To delineate the downstream events of ST3Gal1 signaling, we utilized a bioinformatical approach that leveraged on the greater statistical power of large patient databases, and subsequently verified our predictions in patient-derived glioma cells. We identify FoxM1, a major stem cell regulatory gene, as a downstream effector, and show that ST3Gal1 mediates the glioma phenotype through control of FoxM1 protein degradation
ST3GAL1-Associated Transcriptomic Program in Glioblastoma Tumor Growth, Invasion, and Prognosis.
Disease stage
View SamplesIn these microarray experiments, we characterize the gene expression of mammary epithelial cells (MCF10A cells) grown in either a traditional monolayer cell culture setting (2D) or on Matrigel, which induces single MCF10A cells to form organized acinar structures (3D). Morphogenesis of mammary epithelial cells into organized acinar structures in vitro is accompanied by widespread changes in gene expression patterns, including a substantial decrease in expression of Myc.
Epithelial cell organization suppresses Myc function by attenuating Myc expression.
Specimen part, Cell line, Time
View Samples