The objective was to study the transcriptomic changes in adipose tissue in the early stages of lactation, specifically in Bos Taurus, Holstein dairy cattle as a function of milk production and genetic merit.
Differential expression of genes in adipose tissue of first-lactation dairy cattle.
Specimen part
View SamplesEnhanced understanding of differential gene expression and biological pathways associated with distinct phases of intramembranous bone regeneration following femoral marrow ablation surgery will improve future advancements regarding osseointegration of joint replacement implants, biomaterials design, and bone tissue engineering. A rat femoral marrow ablation model was performed and genome-wide microarray data were obtained from samples at 1, 3, 5, 7, 10, 14, 28, and 56 days post-ablation, with intact bones serving as controls at Day 0. Bayesian model-based clustering produced eight distinct groups amongst 9,062 significant gene probe sets based on similar temporal expression profiles, which were further categorized into three major temporal classes of increased, variable, and decreased expression. Differential biological processes and pathways associated with each major temporal group were identified, and significantly expressed genes involved were visually represented by heat maps. It was determined that the increased expression group exclusively contains genes involved in pathways for matrix metalloproteinases (MMPs), Wnt signaling, TGF- signaling, and inflammatory pathway. Only the variable expression group contains genes associated with glycolysis and gluconeogenesis, Notch Signaling Pathway, natural killer cell mediated cytotoxicity, and B cell receptor signaling pathway, among others. The decreased group exclusively consists of genes involved in heme biosynthesis, p53 signaling pathway, and hematopoietic cell lineage. Significant biological pathways and transcription factors expressed at each time point post-ablation were also identified.
Temporal gene expression profiling during rat femoral marrow ablation-induced intramembranous bone regeneration.
Sex, Specimen part, Time
View SamplesIn order to understand the immunopathogenesis of severe influenza H1N1/09, we compared the whole blood RNA transcriptome of children hospitalised with H1N1/09 infection with that of children hospitalised with RSV or bacterial infection
Transcriptomic profiling in childhood H1N1/09 influenza reveals reduced expression of protein synthesis genes.
Sex, Specimen part
View SamplesEndogenous retroviruses (ERVs) have accumulated in vertebrate genomes and contribute to the complexity of gene regulation. KAP1 represses ERVs during development by its recruitment to their repetitive sequences through KRAB-zinc finger proteins (KZNFs), but little is known about the regulation of ERVs in differentiated cells. We observed that KAP1 repression of HERVK14C was conserved in differentiated human cells and performed KAP1 knockout to obtain an overview of KAP1 function. Our results show that KAP1 represses ERVs (including HERV-T and HERV-S) and ZNFs, both of which overlap with KAP1 binding sites and H3K9me3 in multiple cell types. Furthermore, this pathway is functionally conserved in primary peripheral blood mononuclear cells. Cytosine methylation that acts on KAP1-regulated loci is necessary to prevent an interferon response, and KAP1-depletion leads to activation of some interferon-stimulated genes. Finally, loss of KAP1 leads to a decrease in H3K9me3 enrichment at ERVs and ZNFs and an RNA-sensing response mediated through MAVS signaling. These data indicate that the KAP1-KZNF pathway contributes to genome stability and innate immune control in differentiated human cells. Overall design: Dissection of which transposons and genes KAP1 regulates in differentiated human cells
KAP1 regulates endogenous retroviruses in adult human cells and contributes to innate immune control.
Cell line, Subject
View SamplesIsoniazid induced varying degrees of hepatic steatosis in an inbred strain Mouse Diversity Panel (MDP) study. RNA was isolated from all animals for analysis of gene expression changes in the liver. The objective of this study was to identify gene expression changes that drive isoniazid-induced steatosis.
A systems biology approach utilizing a mouse diversity panel identifies genetic differences influencing isoniazid-induced microvesicular steatosis.
Sex, Specimen part, Treatment
View SamplesHuman CD4+ T cells and CD14+ monocytes from healthy donors were co-cultured with anti-CD3 for three days in the presence or absence of TNF-alpha mAb (Adalimumab). Classical Th17 cells (Th17) or those generated in the presence of the inhibitor (iTh17) were then sorted and analyzed by full transcriptome microarray analysis.
TNF-α blockade induces IL-10 expression in human CD4+ T cells.
Specimen part, Treatment, Subject
View SamplesWe performed RNA-seq on human embryonic stem cells raised in an established condition to produce 95% Nkx2.1 cells, with and without withdrawal of Wnt-agonist CHIR99021 or addition of Wnt-inhibitor IWP2 Overall design: Human lung progenitors were derived from RUES2 as described in Huang et al 2014, Huang et al 2015. Wnt agonist withdrawal or addition of Wnt inhibitor was done at day 12, with cell harvest for RNA-seq at day 12 (control) and day 15 (control and treatment)
β-Catenin maintains lung epithelial progenitors after lung specification.
Specimen part, Treatment, Subject, Time
View SamplesImbalances in glucose and energy homeostasis are at the core of the worldwide epidemic of obesity and diabetes. Here, we illustrate an important role of the TGF-beta/Smad3 signaling pathway in regulating glucose and energy homeostasis. Smad3 deficient mice are protected from diet-induced obesity and diabetes. Interestingly, the metabolic protection is accompanied by Smad3-/- white adipose tissue acquiring the bioenergetic and gene expression profile of brown fat/skeletal muscle. Smad3-/- adipocytes demonstrate a marked increase in mitochondrial biogenesis, with a corresponding increase in basal respiration, and Smad3 acts as a repressor of PGC-alpha1 expression. We observe significant correlation between TGF-beta1 levels and adiposity in rodents and humans. Further, systemic blockade of TGF-beta1 signaling protects mice from obesity, diabetes and hepatic steatosis. Together, these results demonstrate that TGF-beta signaling regulates glucose tolerance and energy homeostasis and suggest that modulation of TGF-beta1 activity might be an effective treatment strategy for obesity and diabetes.
Protection from obesity and diabetes by blockade of TGF-β/Smad3 signaling.
Treatment
View SamplesThe early life microbiome plays important roles in host immunological and metabolic development. Because type 1 diabetes (T1D) incidence has been increasing substantially in recent decades, we hypothesized that early-life antibiotic use alters gut microbiota that predisposes to disease. Using NOD mice that are genetically susceptible to T1D, we examined the effects of exposure to either continuous low-dose antibiotics or pulsed therapeutic antibiotics (PAT) early in life, mimicking childhood exposures. We found that in mice receiving PAT, T1D incidence was significantly higher, microbial community composition and structure differed compared with controls. In pre-diabetic male PAT mice, the intestinal lamina propria had lower Th17 and T reg proportions and intestinal SAA expression than in controls, suggesting key roles in transducing the altered microbiota signals. PAT affected microbial lipid metabolism and host cholesterol biosynthetic gene expression. These findings show that early-life antibiotic treatments alter the gut microbiota and its metabolic capacities, intestinal gene expression, and T-cell populations, accelerating T1D onset in NOD mice.
Antibiotic-mediated gut microbiome perturbation accelerates development of type 1 diabetes in mice.
Sex, Specimen part, Disease, Disease stage, Treatment
View SamplesPreterm birth is an important unsolved clinical problem. Despite advanced treatments, infants who survive prematurity remain at increased risk for permanent disabilities. In approximately one-third of cases, prematurity is related to infection and/or inflammation, which renders hostile the normally receptive intrauterine environment. Proinflammatory cytokines provoke up-regulation of genes that promote uterine contractions. Using monolayer cultures of human cervical fibroblast cells as a model, we profiled the global pattern of gene expression in response to cytokine challenge.
Progesterone Receptor Signaling Selectively Modulates Cytokine-Induced Global Gene Expression in Human Cervical Stromal Cells.
Treatment
View Samples