In this work, we determine total mRNA decay rates in rpb1-1 and rpb1-1/caf1? cells, calculate half-lives in rpb1-1/caf1? cells relative to rpb1-1 cells and correlate them with codon optimality. Overall design: mRNA profiling was done on 10 time points in rpb1-1/caf1 cells and sequenced using a paired end protocol on an Illumina HiSeq2000 instrument. A biological duplicate was performed.
mRNA Deadenylation Is Coupled to Translation Rates by the Differential Activities of Ccr4-Not Nucleases.
Cell line, Subject
View SamplesAll mRNA was isolated after 8 hours of culture time in each of three culture conditions. (1) TCPS Plate, (2) Collagen-GAG 2 dimensional coated plate and (3) collagen-GAG three dimensional mesh.
Fibroblast remodeling activity at two- and three-dimensional collagen-glycosaminoglycan interfaces.
No sample metadata fields
View SamplesThe molecular mechanisms of neurogenic fate determination are of particular importance in light of the need to regenerate neurons. However the molecular logic of neurogenic fate determination is still ill understood, even though some key transcription factors have been implicated. Here we describe how one of these, the transcription factor Pax6, regulates adult neurogenesis by initiating a cross-regulatory network of 3 transcription factors executing neuronal fate and regulating genes required for neuronal differentiation. This network is initiated and driven to sufficiently high expression levels by the transcription factor Pax6 in close interaction with Brg1-containing SWI/SNF chromatin remodeling factors.
The BAF complex interacts with Pax6 in adult neural progenitors to establish a neurogenic cross-regulatory transcriptional network.
Sex, Age, Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Comparative physiology and transcriptional networks underlying the heat shock response in Populus trichocarpa, Arabidopsis thaliana and Glycine max.
Specimen part, Treatment
View SamplesThe heat shock response continues to be layered with additional complexity as interactions and cross-talk among heat shock proteins, the reactive oxygen network and hormonal signaling are discovered. However, comparative analyses exploring variation in each of these processes among species remains relatively unexplored. In controlled environment experiments, photosynthetic response curves were conducted from 22 C to 42 C and indicated that temperature optimum of light saturated photosynthesis was greater for Glycine max relative to Arabidopsis thaliana or Populus trichocarpa. Transcript profiles were taken at defined states along the temperature response curves and inferred pathway analysis revealed species-specific variation in the abiotic stress and the minor carbohydrate raffinose/galactinol pathways. A weighted gene co-expression network approach was used to group individual genes into network modules linking biochemical measures of the antioxidant system to leaf-level photosynthesis among P. trichocarpa, G. max and A. thaliana. Network enabled results revealed an expansion in the G. max HSP17 protein family and divergence in the regulation of the antioxidant and heat shock module relative to P. trichocarpa and A. thaliana. These results indicate that although the heat shock response is highly conserved, there is considerable species-specific variation in its regulation.
Comparative physiology and transcriptional networks underlying the heat shock response in Populus trichocarpa, Arabidopsis thaliana and Glycine max.
Specimen part, Treatment
View SamplesThe heat shock response continues to be layered with additional complexity as interactions and cross-talk among heat shock proteins, the reactive oxygen network and hormonal signaling are discovered. However, comparative analyses exploring variation in each of these processes among species remains relatively unexplored. In controlled environment experiments, photosynthetic response curves were conducted from 22 C to 42 C and indicated that temperature optimum of light saturated photosynthesis was greater for Glycine max relative to Arabidopsis thaliana or Populus trichocarpa. Transcript profiles were taken at defined states along the temperature response curves and inferred pathway analysis revealed species-specific variation in the abiotic stress and the minor carbohydrate raffinose/galactinol pathways. A weighted gene co-expression network approach was used to group individual genes into network modules linking biochemical measures of the antioxidant system to leaf-level photosynthesis among P. trichocarpa, G. max and A. thaliana. Network enabled results revealed an expansion in the G. max HSP17 protein family and divergence in the regulation of the antioxidant and heat shock module relative to P. trichocarpa and A. thaliana. These results indicate that although the heat shock response is highly conserved, there is considerable species-specific variation in its regulation.
Comparative physiology and transcriptional networks underlying the heat shock response in Populus trichocarpa, Arabidopsis thaliana and Glycine max.
Specimen part, Treatment
View SamplesThe adenosine 2A receptor (A2AR) is expressed on regulatory T cells (Tregs), but the functional significance is currently unknown. We compared the gene expression between wild-type (WT) and A2AR knockout (KO) Tregs and between WT Tregs treated with vehicle or a selective A2AR agonist.
Autocrine adenosine signaling promotes regulatory T cell-mediated renal protection.
Specimen part
View SamplesThese experiments are designed to discover genes that are expressed selectively by synaptic nuclei in skeletal muscle with the particular goal of identifying genes that regulate motor axon growth and differentiation.
CD24 is expressed by myofiber synaptic nuclei and regulates synaptic transmission.
No sample metadata fields
View SamplesEnteroendocrine L-cells release hormones that control metabolism and appetite and are targets under investigation for the treatment of diabetes and obesity. Understanding L-cell diversity and expression profiles is critical for identifying target receptors that will translate into altered hormone secretion. We performed single cell RNA sequencing of mouse L-cells from the upper small intestine to distinguish cellular populations, revealing that L-cells form 3 major clusters: a group with typical characteristics of classical L-cells, including high expression of Gcg and Pyy; a cell type overlapping with Gip-expressing K-cells; and a unique cluster expressing Tph1 and Pzp that was predominantly located in duodenal villi and co-produced 5HT. Expression of G-protein coupled receptors differed between clusters, suggesting the cell types are differentially regulated, and would be differentially targetable. Our findings support the emerging concept that many enteroendocrine cell populations are highly overlapping, with individual cells producing a range of peptides previously assigned to distinct cell types. Overall design: Single cell RNA sequencing of mouse duodenal L-cells cells
Single-cell RNA-sequencing reveals a distinct population of proglucagon-expressing cells specific to the mouse upper small intestine.
Specimen part, Subject
View SamplesNeonatal thymus MSCs and bone derived MSCs have differential abilities to stimulate angiogenesis and invade extracellular matrix.
Tissue-specific angiogenic and invasive properties of human neonatal thymus and bone MSCs: Role of SLIT3-ROBO1.
Specimen part, Subject
View Samples