Transcriptome analysis of the targeted overexpression of branchless (UAS-bnl) using a tracheal driver (breathless-GAL4) in comparison to a wildtype reference at two different developmental stages (10-11h AEL and 17-19h AEL), and of a bnl-P1 mutant in comparison to a wildtype reference at 17-19h AEL.
Identification of FGF-dependent genes in the Drosophila tracheal system.
Age, Time
View SamplesThese data provide a basis for exploration of gene expression differences between physiologically extreme accessions of Arabidopsis thaliana.
Exploring genetic and expression differences between physiologically extreme ecotypes: comparative genomic hybridization and gene expression studies of Kas-1 and Tsu-1 accessions of Arabidopsis thaliana.
Specimen part, Treatment
View SamplesThese data provide a basis for the detection of sequence based polymorphisms between the Col-1, Tsu-1, and Kas-1 accessions of Arabidopsis thaliana. The experimental data provides an initial characterization of differences among the accessions, as well as a means for improving gene expression studies with the filtering of SFP from arrays studies.
Exploring genetic and expression differences between physiologically extreme ecotypes: comparative genomic hybridization and gene expression studies of Kas-1 and Tsu-1 accessions of Arabidopsis thaliana.
Specimen part
View SamplesRegulatory T-cells (Treg) play an essential role in the negative regulation of immune answers by developing an attenuated cytokine response that allows suppressing proliferation and effector function of T-cells (CD4+ Th). The transcription factor FoxP3 is responsible for the regulation of many genes involved in the Treg gene signature. Its ablation leads to severe immune deficiencies in human and mice. Recent developments in sequencing technologies have revolutionized the possibilities to gain insights into transcription factor binding by ChiP-Seq and into transcriptome analysis by mRNA-Seq. We combine FoxP3 ChiP-Seq and mRNA-Seq in order to understand the transcriptional differences between primary human CD4+ T helper and regulatory T-cells, as well as to study the role of FoxP3 in generating those differences. We show, that mRNA-Seq allows analyzing the transcriptomal landscape of T-cells including the expression of specific splice variants at much greater depth than previous approaches, whereas 50% of transcriptional regulation events have not been described before by using diverse array technologies.
Next-generation insights into regulatory T cells: expression profiling and FoxP3 occupancy in Human.
No sample metadata fields
View SamplesTORC1 is a structurally and functionally conserved multiprotein complex that regulates many aspects of eukaryote growth including the synthesis and assembly of ribosomes. The protein kinase activity of this complex is responsive to environmental cues and is potently inhibited by the natural product macrolide rapamycin. Insights into how TORC1 regulates growth have been provided with the recent identification of the rapamycin-sensitive phosphoproteome in yeast. Building on these data, we show here that Sch9, an AGC family kinase and direct substrate of TORC1, promotes ribosome biogenesis (ribi) and ribosomal protein (RP) gene expression via direct inhibitory phosphorylation of three transcription repressors, Stb3, Dot6 and Tod6. Dephosphorylation of these factors allows them to recruit the RPD3L histone deactelyase complex to ribi/RP gene promoters. Since rRNA and tRNA transcription are also under its control, Sch9 appears to be well positioned to coordinately regulate transcriptional aspects of ribosome biogenesis. Overall design: mRNA-Seq of 8 S. cerevisiae strains treated with either DMSO alone or 1NM-PP1, a small molecule inhibitor for analog-sensitive kinases such as sch9-as.
Sch9 regulates ribosome biogenesis via Stb3, Dot6 and Tod6 and the histone deacetylase complex RPD3L.
Specimen part, Cell line, Treatment, Subject
View SamplesSince the discovery of radial glia as the source of neurons, their heterogeneity in regard to neurogenesis has been described by clonal and time-lapse analysis in vitro. However, the molecular determinants specifying neurogenic radial glia differently from radial glia that mostly self-renew remain ill-defined. Here, we isolated two radial glial subsets that co-exist at mid-neurogenesis in the developing cerebral cortex and their immediate progeny. While one subset generates neurons directly, the other is largely non-neurogenic but also gives rise to Tbr2-positive basal precursors, thereby contributing indirectly to neurogenesis. Isolation of
Prospective isolation of functionally distinct radial glial subtypes--lineage and transcriptome analysis.
No sample metadata fields
View SamplesEvolution of the mammalian brain encompassed a remarkable increase in size of cerebral cortex, including tangential and radial expansion, but the mechanisms underlying these key parameters are still largely unknown. Here, we identified the novel DNA associated protein TRNP1 as a regulator of cerebral cortical expansion in both these dimensions. Gain and loss of function experiments in the mouse cerebral cortex in vivo demonstrate that high Trnp1 levels promote neural stem cell self-renewal and tangential expansion, while lower levels promote radial expansion resulting in a potent increase in the generation of intermediate progenitors and outer radial glial cells resulting in folding of the otherwise smooth murine cerebral cortex. Remarkably, TRNP1 expression levels exhibit regional differences also in the cerebral cortex of human fetuses anticipating radial or tangential expansion respectively. Thus, the dynamic regulation of TRNP1 is critical to regulate tangential and radial expansion of the cerebral cortex in mammals.
Prospective isolation of functionally distinct radial glial subtypes--lineage and transcriptome analysis.
Sex, Specimen part
View SamplesReactive oxygen species (ROS) are key signalling molecules that regulate growth and development and coordinate responses to biotic and abiotic stresses. ROS homeostasis is controlled through a complex network of ROS production and scavenging enzymes. Recently, the first genes involved in ROS perception and signal transduction have been identified and, currently, we are facing the challenge to uncover the other players within the ROS regulatory gene network. The specificity of ensuing cellular responses depends on the type of ROS and their subcellular production sites. Various experimental systems, including catalase-deficient plants, in combination with genome-wide expression studies demonstrated that increased hydrogen peroxide (H2O2) levels significantly affect the transcriptome of plants and are capable of launching both defence responses and cell death events.
Spatial H2O2 signaling specificity: H2O2 from chloroplasts and peroxisomes modulates the plant transcriptome differentially.
Age, Specimen part
View SamplesThe transcription factor Evi1 is essential for the formation and maintenance of hematopoietic stem cells, and induces clonal dominance with malignant progression upon constitutive activation by chromosomal rearrangements or transgene integration events. To understand the immediate and adaptive response of primary murine hematopoietic cells to the transcriptional upregulation of Evi1, we developed an inducible lentiviral vector system with a robust expression switch. We found that Evi1 delays differentiation and promotes survival in myeloid culture conditions, orchestrating a battery of genes involved in stemness (Aldh1a1, Ly6a [Sca1], Abca1, Epcam, among others). Importantly, Evi1 suppresses Cyclins and Cyclin-dependent kinases (Cdk), while it upregulates Cdk inhibitors, inducing quiescence in various proliferation-inducing cytokine conditions and operating in a strictly dose-dependent manner. Hematopoietic cells with persisting Evi1-induction tend to adopt a relatively low expression level. We thus classify Evi1 as a dormancy-inducing oncogene, likely requiring epigenetic and genetic compensation for cell expansion and malignant progression.
Activation of Evi1 inhibits cell cycle progression and differentiation of hematopoietic progenitor cells.
Specimen part
View SamplesThe transcription factor Evi1 is essential for the formation and maintenance of hematopoietic stem cells, and induces clonal dominance with malignant progression upon constitutive activation by chromosomal rearrangements or transgene integration events. To understand the immediate and adaptive response of primary murine hematopoietic cells to the transcriptional upregulation of Evi1, we developed an inducible lentiviral vector system with a robust expression switch. We found that Evi1 delays differentiation and promotes survival in myeloid culture conditions, orchestrating a battery of genes involved in stemness (Aldh1a1, Ly6a [Sca1], Abca1, Epcam, among others). Importantly, Evi1 suppresses Cyclins and Cyclin-dependent kinases (Cdk), while it upregulates Cdk inhibitors, inducing quiescence in various proliferation-inducing cytokine conditions and operating in a strictly dose-dependent manner. Hematopoietic cells with persisting Evi1-induction tend to adopt a relatively low expression level. We thus classify Evi1 as a dormancy-inducing oncogene, likely requiring epigenetic and genetic compensation for cell expansion and malignant progression.
Activation of Evi1 inhibits cell cycle progression and differentiation of hematopoietic progenitor cells.
No sample metadata fields
View Samples