EGF and HRG, growth factor ligands for EGFR and ErbB3/4 receptor, induce transient and sustained ERK activity associated with cellular proliferation and differentiation of MCF-7 cells, respectively. To rigorously analyze the effect of ERK signal duration for mRNA expression dynamics and its relationship with cell determination, we modified the EGF-triggered ERK signal duration by changing the EGFR activation dynamics by impairing the ubiquitination and degradation process. Mutation of the six lysine residues (6KR; K692, K713, K730, K843, K905 and K946) of the EGFR responsible for ubiquitin conjugation has shown sustained phosphorylation of the receptor (Huang et al, 2006; Goh et al, 2010). Therefore we constructed the MCF-7 cell lines that stably express 6KR EGFR (6KR), and analyzed signaling and mRNA expression dynamics in response to EGF and HRG.
Feedforward regulation of mRNA stability by prolonged extracellular signal-regulated kinase activity.
Sex, Age, Specimen part, Disease, Cell line, Race, Time
View SamplesHypertrophic scar (HTS) formation is characterized by exuberant fibroproliferation for reasons that remain poorly understood1. One important but often overlooked component of wound repair is mechanical force, which regulates reciprocal cell-matrix interactions through focal adhesion components including focal adhesion kinase (FAK)1,2. Here we report that FAK is activated following cutaneous injury and that this activation is potentiated by mechanical loading. Transgenic mice lacking fibroblast-specific FAK exhibit significantly less fibrosis in a preclinical model of HTS formation. Inflammatory pathways involving monocyte chemoattractant protein-1 (MCP-1), a chemokine highly implicated in human skin fibrosis3, are triggered following FAK activation, mechanistically linking physical force to fibrosis. Further, small molecule inhibition of FAK effectively abrogates fibroproliferative mechanisms in human cells and significantly reduces scar formation in vivo. Collectively, these findings establish a molecular basis for HTS formation based on the mechanical activation of fibroblast-specific FAK and demonstrate the therapeutic potential of targeted mechanomodulatory strategies.
Focal adhesion kinase links mechanical force to skin fibrosis via inflammatory signaling.
Sex, Specimen part
View SamplesBackground: The vast majority of human genes (.70%) are alternatively spliced. Although alternative pre-mRNA processing is modified in multiple tumors, alternative hyper-splicing signatures specific to particular tumor types are still lacking. Here, we report the use of Affymetrix Human Exon Arrays to spot hyper-splicing events characteristic of myasthenia gravis (MG)-thymoma, thymic tumors which develop in patients with MG and discriminate them from colon cancer changes. Methodology/Principal Findings: We combined GO term to parent threshold-based and threshold-independent ad-hoc functional statistics with in-depth analysis of key modified transcripts to highlight various exon-specific changes. These denote alternative splicing in MG-thymoma tumors compared to healthy human thymus and to in-house and Affymetrix datasets from colon cancer and healthy tissues. By using both global and specific, term-to-parent Gene Ontology (GO) statistical comparisons, our functional integrative ad-hoc method allowed the detection of disease-relevant splicing events. Conclusions/Significance: Hyper-spliced transcripts spanned several categories, including the tumorogenic ERBB4 tyrosine kinase receptor and the connective tissue growth factor CTGF, as well as the immune function-related histocompatability gene HLA-DRB1 and interleukin (IL)19, two muscle-specific collagens and one myosin heavy chain gene; intriguingly, a putative new exon was discovered in the MG-involved acetylcholinesterase ACHE gene. Corresponding changes in spliceosome composition were indicated by co-decreases in the splicing factors ASF/SF2 and SC35. Parallel tumor-associated changes occurred in colon cancer as well, but the majority of the apparent hyper-splicing events were particular to MGthymoma and could be validated by Fluorescent In-Situ Hybridization (FISH), Reverse TranscriptionPolymerase Chain Reaction (RT-PCR) and mass spectrometry (MS) followed by peptide sequencing. Our findings demonstrate a particular alternative hyper-splicing signature for transcripts over-expressed in MG-thymoma, supporting the hypothesis that alternative hyper-splicing contributes to shaping the biological functions of these and other specialized tumors and opening new venues for the development of diagnosis and treatment approaches
Identifying alternative hyper-splicing signatures in MG-thymoma by exon arrays.
Sex
View SamplesPD is the second most common neurodegenerative disease worldwide with growing prevalence. MPTP is a neurotoxin which causes the appearance of Parkinson's disease (PD) pathology. The involvement of the cholinergic system in PD has been identified decades ago and anti-cholinergic drugs were upon the first drugs used for symptomatic treatment of PD. Of note, MPTP intoxication is a model of choice for symptomatic neuroprotective therapies since it have been quite predictive. Mice were exposed to the dopaminergic neurotoxin 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP), with or without the protective acetylcholinesterase (AChE-R) variant. Transgenic AChE-S (the synaptic variant), AChE-R (the shorter, protective variant) and FVB/N control mice were included in this study. Two brain regions were examined: the pre-frontal cortex (PFC) and the striatal caudate-putamen (CPu). Each condition (i.e brain region and transgenic variant) was examined on both naive and MPTP-exposed mice.
Meta-analysis of genetic and environmental Parkinson's disease models reveals a common role of mitochondrial protection pathways.
Specimen part, Treatment
View SamplesSub-thalamic deep brain stimulation (DBS) reversibly modulates Parkinsons disease (PD) motor symptoms, providing an unusual opportunity to compare leukocyte transcripts in the same subjects before and after neurosurgery and after disconnecting the stimulus (ON-and OFF-stimulus). Here, we report rapid stimulus-induced and largely reversible changes in PD leukocyte transcripts, which were larger in scope than the disease-induced changes. These transcript changes classified advanced pre- from post-surgery PD patients and discriminated patients from controls. Moreover, the extent of changes correlated with the neurological efficacy of the DBS neurosurgery, and covered both regulatory pathways and individual transcript changes, e.g. SNCA, PARK7 and the splicing factor SFRS1. Following 1 hour OFF-stimulus, these changes were largely reversed. We extracted from these differences a modified transcripts signature which discriminated controls from advanced PD patients, pre- from post-surgery and ON-from OFF-stimulus conditions. A further gene-list independent analysis detected reversed pathways. Our findings suggest future uses of this approach and the discovered molecular signature for early diagnostics of PD and for identifying novel targets for therapeutic intervention in this and other DBS-treatable neurological diseases.
Deep brain stimulation induces rapidly reversible transcript changes in Parkinson's leucocytes.
Sex, Specimen part, Disease stage
View SamplesRNAseq data for Col-0. cob-6, sfr6-3 and cob-6sfr6-3 Overall design: 7 days old seedlings grown in 24h light with 0
Identification of MEDIATOR16 as the Arabidopsis COBRA suppressor MONGOOSE1.
Specimen part, Subject
View Samplesthree replicates of HT29 cells per conditionwere grown under normoxic and hypoxic conditions. RNA and miRNA was extracted from each replicate and run on the GPL570 and GPL5106 arrays respectively.
Role of oxygen availability in CFTR expression and function.
No sample metadata fields
View SamplesYB-1 controls epithelial-mesenchymal transitions by restricting translation of growth-related mRNAs and enabling expression of EMT-inducing transcription factors. We used microarrays to characterize the direct transcriptional and indirect translational regulation of mRNAs by exogenous YB-1 in breast cancer cell lines.
Translational activation of snail1 and other developmentally regulated transcription factors by YB-1 promotes an epithelial-mesenchymal transition.
No sample metadata fields
View SamplesThe level of trypsin-2 has been shown to correlate with the malignancy and metastatic potential of many cancer.
Trypsin-2 enhances carcinoma invasion by processing tight junctions and activating ProMT1-MMP.
Specimen part, Cell line
View SamplesNovel prognostic subclasses of high-grade astrocytoma are identified and discovered to resemble stages in neurogenesis. One tumor class displaying neuronal lineage markers shows longer survival, while two tumor classes enriched for neural stem cell markers display equally short survival. Poor prognosis subclasses exhibit either markers of proliferation or of angiogenesis and mesenchyme. Analysis of gene expression data is described in Phillips et al., Cancer Cell, 2006.
Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis.
Sex, Age, Disease stage
View Samples