Huntington’s disease (HD) is an autosomal dominant neurodegenerative disease whose predominant neuropathological signature is the selective loss of medium spiny neurons in the striatum. Despite this selective neuropathology, the mutant protein (huntingtin) is found in virtually every cell so far studied, and, consequently, phenotypes are observed in a wide range of organ systems both inside and outside the central nervous system. We, and others, have suggested that peripheral dysfunction could contribute to the rate of progression of striatal phenotypes of HD. To test this hypothesis, we lowered levels of huntingtin by treating mice with antisense oligonucleotides (ASOs) targeting the murine Huntingtin gene. To study the relationship between peripheral huntingtin levels and striatal HD phenotypes, we utilized a knock-in model of the human HD mutation (the B6.HttQ111/+ mouse). We treated mice with ASOs from 2-10 months of age, a time period over which significant HD-relevant signs progressively develop in the brains of HttQ111/+ mice. Peripheral treatment with ASOs led to persistent reduction of huntingtin protein in peripheral organs, including liver (64% knockdown), brown adipose (66% knockdown), and white adipose tissues (71% knockdown). This reduction was not associated with alterations in the severity of HD-relevant signs in the striatum of HttQ111/+ mice at the end of the study, including transcriptional dysregulation, the accumulation of neuronal intranuclear inclusions, and behavioral changes such as subtle hypoactivity and reduced exploratory drive. These results suggest that the amount of peripheral reduction achieved in the current study does not significantly impact the progression of HD-relevant signs in the central nervous system. Overall design: HttQ111/+ and Htt+/+ mice were given weekly intraperitoneal injections of Htt ASO, control ASO, or saline from 2 to 10 months of age. Striatal mRNA was sequenced from and N of 5-6 per arm (N=35 total).
Peripheral huntingtin silencing does not ameliorate central signs of disease in the B6.HttQ111/+ mouse model of Huntington's disease.
Sex, Cell line, Treatment, Subject
View SamplesIn all primary cells analyzed to date, aneuploidy is associated with poor proliferation. Yet, how abnormal karyotypes affect cancer a disease characterized by both aneuploidy and heightened proliferative capacity is largely unknown. Here, I demonstrate that the transcriptional alterations caused by aneuploidy in primary cells are also present in chromosomally-unstable cancer cell lines, but are not common to all aneuploid cancers. Moreover, chromosomally-unstable cancer lines display increased glycolytic and TCA-cycle flux, as is also observed in primary aneuploid cells. The biological response to aneuploidy is associated with cellular stress and slow proliferation, and a 70-gene signature derived from primary aneuploid cells is a strong predictor of increased survival in several cancers. Inversely, a transcriptional signature derived from clonal aneuploidy in tumors correlates with high mitotic activity and poor prognosis. I speculate that there are two types of aneuploidy in cancer: clonal aneuploidy, which is selected during tumor evolution and is associated with robust growth, and sub-clonal aneuploidy, which is caused by chromosomal instability (CIN) and more closely resembles the stressed state of primary aneuploid cells. Nonetheless, CIN is not benign: a subset of genes upregulated in high-CIN cancers predict aggressive disease in human patients in a proliferation-independent manner.
A transcriptional and metabolic signature of primary aneuploidy is present in chromosomally unstable cancer cells and informs clinical prognosis.
Specimen part
View SamplesDespite their distinct biology, granulosa cell tumours (GCTs) are treated the same as other ovarian tumours. Intriguingly, a recurring somatic mutation in the transcription factor Forkhead Box L2 (FOXL2) 402C>G has been found in nearly all GCTs examined. This investigation aims to identify the pathogenicity of mutant FOXL2 by studying its altered transcriptional targets. The expression of mutant FOXL2 was reduced in the GCT cell line KGN, and wildtype and mutant FOXL2 were overexpressed in the GCT cell line COV434. Comparisons were made between the transcriptomes of control cells and cells altered by FOXL2 knockdown and overexpression, to detect potential transcriptional targets of mutant FOXL2. Comparisons were made between the transcriptomes of control cells and cells altered by FOXL2 knockdown and overexpression, to detect potential transcriptional targets of mutant FOXL2.
The transcriptional targets of mutant FOXL2 in granulosa cell tumours.
Cell line
View SamplesChronic alcohol consumption can lead to alchohol-related brain damage (ARBD). Despite the well known acute effects of alcohol the mechanism responsible for chronic brain damage is largely unknown. Pathologically the major change is the loss of white matter while neuronal loss is mild and restricted to a few areas such as the prefrontal cortex. In order to improve our understanding of ARBD pathogenesis we used microarrays to explore the white matter transcriptome of alcoholics and controls.
Comorbidities, confounders, and the white matter transcriptome in chronic alcoholism.
Specimen part, Disease, Disease stage
View SamplesEthanol is a well-known teratogen. While this teratogenic potential is well-characterized clinically, the mechanisms through which ethanol exposure results in developmental defects remain unclear. Here we use the zebrafish model to elucidate eye-specific mechanisms that may underlie ethanol-mediated microphthalmia (reduced eye size), using time-series microarray analysis of gene expression of eye tissues of embryos exposed to 1.5% ethanol vs. untreated embryos. We identified 62 genes differentially expressed in ethanol-treated as compared to control zebrafish eyes from all sampling times over the period of retinal neurogenesis (24-48 hours post-fertilization). Application of the EDGE (extraction of differential gene expression) algorithm identified over 3000 genes differentially expressed over developmental time in ethanol-treated embryo eyes as compared to untreated embryo eyes. These lists included several genes indicating a mis-regulated cellular stress response (heat shock response) due to ethanol exposure. Combined treatment with sub-threshold levels of ethanol and a morpholino (MO) targeting heat shock factor 1 (hsf-1) mRNA resulted in a microphthalmic phenotype, suggesting convergent molecular pathways. Manipulation of the heat shock response by thermal preconditioning partially prevented ethanol-mediated microphthalmia while maintaining Hsf-1 expression. Together these data are consistent with roles for reduced Hsf-1 in mediating microphthalmic effects of embryonic ethanol exposure in zebrafish.
Eye-specific gene expression following embryonic ethanol exposure in zebrafish: roles for heat shock factor 1.
Specimen part, Treatment
View SamplesMesothelia, which cover all coelomic organs and body cavities in vertebrates, perform diverse functions in embryonic and adult life. Yet, mesothelia are traditionally viewed as simple, uniform epithelia.
Autotaxin signaling governs phenotypic heterogeneity in visceral and parietal mesothelia.
Specimen part
View SamplesMutation or deletion of Neurofibromin (NF1), an inhibitor of RAS signaling, frequently occurs in epithelial ovarian cancer (EOC), supporting therapies that target downstream RAS effectors, such as the RAF-MEK-ERK pathway. However, no comprehensive studies have been carried out testing the efficacy of MEK inhibition in NF1-deficient EOC. Here, we performed a detailed characterization of MEK inhibition in NF1-deficient EOC cell lines using kinome profiling and RNA sequencing. Our studies showed MEK inhibitors were ineffective at providing durable growth inhibition in NF1-deficient cells due to kinome reprogramming. MEKi-mediated destabilization of FOSL1 resulted in induced expression of RTKs and their downstream RAF and PI3K signaling overcoming MEKi therapy. MEKi synthetic enhancement screens identified BRD2 and BRD4 as integral mediators of the MEKi-induced RTK signatures. Inhibition of BET proteins using BET bromodomain inhibitors (BETi) blocked MEKi-induced RTK reprogramming, indicating BRD2 and BRD4 represent promising therapeutic targets in combination with MEKi to block resistance due to kinome reprogramming in NF1-deficient EOC. Overall design: Examination of the global effects on transcription in response to trametinib (GSK212) in A1847 cells.
Intrinsic Resistance to MEK Inhibition through BET Protein-Mediated Kinome Reprogramming in NF1-Deficient Ovarian Cancer.
Specimen part, Cell line, Treatment, Subject
View SamplesDamage-associated molecular pattern (DAMP) molecules S100A8 and S100A9 with well-known functions in inflammation, tumor growth and metastasis. It has been found to have promote tumor cell proliferation activity at low concentration . However, the mechanism underlying this remains unclear. In the current study, we performed genome expression profiling analysis using the Affymetrix genome wide microarray system to identify broad scale changes in gene expression associated with S100a8 or S100a9 recombinant protein stimulation in murine colon carcinoma cell line CT26.WT.
Inflammation-induced S100A8 activates Id3 and promotes colorectal tumorigenesis.
Cell line
View SamplesWe construced combinations of genetic deletions to infer genetic interactions in genomic expression data.
Prediction of phenotype and gene expression for combinations of mutations.
No sample metadata fields
View SamplesThe intestinal epithelium constitutes a crucial defense to the potentially life-threatening effects of gut microbiota. However, due to a complex underlying vasculature, hypoperfusion and resultant tissue ischemia pose a particular risk to function and integrity of the epithelium. The small ubiquitin-like modifier (SUMO) conjugation pathway critically regulates adaptive responses to metabolic stress and is of particular significance in the gut, as inducible knockout of the SUMO-conjugating enzyme Ubc9 results in rapid intestinal epithelial disintegration. Here we analyzed the pattern of individual SUMO isoforms in intestinal epithelium and investigated their roles in intestinal ischemia/reperfusion (I/R) damage. Immunostaining revealed that epithelial SUMO2/3 expression was almost exclusively limited to crypt epithelial nuclei in unchallenged mice. However, intestinal I/R or overexpression of Ubc9 caused a remarkable enhancement of epithelial SUMO2/3 staining along the crypt-villus axis. Unexpectedly, a similar pattern was found in SUMO1 knockout mice. Ubc9 transgenic mice, but also SUMO1 knockout mice were protected from I/R injury as evidenced by better preserved barrier function and blunted inflammatory responses. PCR array analysis of microdissected villus-tip epithelia revealed a specific epithelial contribution to reduced inflammatory responses in Ubc9 transgenic mice, as key chemotactic signaling molecules such as IL17A were significantly downregulated. Together, our data indicate a critical role particularly of the SUMO2/3 isoforms in modulating responses to I/R and provide the first evidence that SUMO1 deletion activates a compensatory process that protects from ischemic damage.
Ubc9 overexpression and SUMO1 deficiency blunt inflammation after intestinal ischemia/reperfusion.
Treatment
View Samples