The immortalized human urothelial cell line, UROtsa, was transformed in six parallel cultures with continual passaging in1 M Cd+2 until the cells were able to attain the ability to form colonies in soft agar and subcutaneous tumors in nude mice. The gene expression profiles between cadmium-transformed and control samples were compared and the differentially expressed genes were identified.
Variation of keratin 7 expression and other phenotypic characteristics of independent isolates of cadmium transformed human urothelial cells (UROtsa).
Cell line
View SamplesThe expression levels of many genes show wide natural variation among strains or populations. This study investigated the potential for animal strain-related genotypic differences to confound gene expression profiles in acute cellular rejection (ACR). Additional analysis allowed for selection of 49 candidate genes uniquely associated with ACR, but only after accounting for the unexpectedly large effect of animal strain. Studies of ACR that examine gene expression in peripheral blood may be confounded by strain differences. These results indicate the need for study designs that eliminate or control for the large effect of genetic background on the transcriptome of immune cells.
Impact of animal strain on gene expression in a rat model of acute cardiac rejection.
Specimen part
View SamplesInterference with chemoresistance to enhance the efficacy of chemotherapeutics may be of great utility for cancer therapy. We have identified KINK-1 (Kinase Inhibitor of NF-kappaB-1), a highly selective small-molecule IKKkappa inhibitor, as a potent suppressor of both constitutive and induced NF-kappaB activity in melanoma cells. While KINK-1 profoundly diminished various NF-kappaB-dependent gene products regulating proliferation, cytokine production or anti-apoptotic responses, the compound by itself showed little antiproliferative or pro-apoptotic activity on the cellular level. However, its combination with some cytostatics markedly enhanced their antitumoral activities in vitro, and doxorubicin-induced NF-kappaB activation, a mechanism implicated in chemoresistance, was abrogated by KINK-1. In addition, when KINK-1 was combined with doxorubicin in an in vivo melanoma model, experimental metastasis was significantly diminished as compared to either treatment alone. Induction of chemoresistance by KINK-1 in vivo was not observed. Thus, KINK-1 or related substances might increase the susceptibility of tumors to chemotherapy.
KINK-1, a novel small-molecule inhibitor of IKKbeta, and the susceptibility of melanoma cells to antitumoral treatment.
No sample metadata fields
View SamplesThe hair follicle (HF) is a complex miniorgan that serves as an ideal model system to study stem cell (SC) interactions with the niche during growth and regeneration. Dermal papilla (DP) cells are required for activating SCs during the adult hair cycle, but the signal exchange between niche and SC precursors/transit amplifying progenitor cells (TACs) that regulates HF morphogenetic growth is largely unknown. Here we use six transgenic reporters to isolate 14 major skin and HF cell populations. With next-generation RNA sequencing we characterize their transcriptomes and define unique molecular signatures. SC precursors, TACs and the DP niche express a plethora of known and novel ligands and receptors. Signaling interaction network analysis reveals a birds-eye view of pathways implicated in epithelial-mesenchymal interactions. Using a systematic tissue-wide approach this work provides a comprehensive platform, linked to an interactive online database, to identify and further explore the SC/TAC/niche crosstalk regulating HF growth. Overall design: FACS was used to isolate specific cell types from P5 mouse back skin
Signaling Networks among Stem Cell Precursors, Transit-Amplifying Progenitors, and their Niche in Developing Hair Follicles.
Specimen part, Subject
View SamplesWe co-isolated hair follicle placode and dermal condensate cells along with other specific cell types from E14.5 embryonic mouse skin. With next-generation RNA-sequencing we defined gene expression patterns in the context of the entire embryonic skin. Overall design: FACS was used to isolate specific cell types from E14.5 embryonic mouse skin.
An Integrated Transcriptome Atlas of Embryonic Hair Follicle Progenitors, Their Niche, and the Developing Skin.
No sample metadata fields
View SamplesUsing Tbx18Cre to target embryonic DP precursors, we ablate Sox2 early and efficiently, resulting in diminished hair shaft outgrowth. Transcriptional profiling of Sox2 null DPs reveals increased Bmp6 and decreased Bmp inhibitor Sostdc1, a direct Sox2 transcriptional target.
Sox2 in the dermal papilla niche controls hair growth by fine-tuning BMP signaling in differentiating hair shaft progenitors.
Specimen part
View SamplesSmall cell lung cancer (SCLC) is an aggressive cancer often diagnosed only after it has metastasized to distant sites (Meuwissen and Berns 2005; Cooper and Spiro 2006). Despite the need to better understand this disease, SCLC remains poorly characterized at the molecular and genomic levels (Forgacs et al. 2001; Pleasance et al. 2010). Using a genetically-engineered mouse model of SCLC driven by conditional deletion of Trp53 and Rb1 in the lung (Jonkers et al. 2001; Vooijs et al. 2002; Meuwissen et al. 2003; Sage et al. 2003), we identified several frequent, high-magnitude focal DNA copy number alterations in SCLC. We uncovered amplification of a novel, oncogenic transcription factor, Nuclear Factor I/B (Nfib) in the mouse SCLC model and in human SCLC. Functional studies indicate that NFIB regulates cell viability and proliferation during transformation.
Nuclear factor I/B is an oncogene in small cell lung cancer.
Cell line
View SamplesMesenchymal stromal cells (MSCs) sense and modulate inflammation and represent potential clinical treatment for immune disorders. However, many details of the bidirectional interaction between MSCs and the innate immune comaprtment are still unsolved. Here we describe an unconventional but functional interaction between pro-inflammatory classically activated macrophages (M1M) and MSCs, with CD54 playing a central role. CD54 was upregulated and enriched specifically at the contact area between M1M and MSCs. Moreover, the specific interaction induced calcium signaling and increased the immunosuppressive capacities of MSCs dependent on CD54 mediation. Our data demonstrate that MSCs can detect an inflammatory microenvironment via a direct and physical interaction with innate immune cells. This finding opens new perspectives for MSC-based cell therapy.
CD54-Mediated Interaction with Pro-inflammatory Macrophages Increases the Immunosuppressive Function of Human Mesenchymal Stromal Cells.
Specimen part
View SamplesBone-marrow mesenchymal stem cells (MSCs) are plastic adherent cells that can differentiate into various tissue lineages, including osteoblasts, adipocytes and chondrocytes. However, this progenitor property is not shared by all cells within the MSC population. In addition, MSCs vary in their proliferation capacities and expression of markers. Because of heterogeneity of CD146 expression in the MSC population, we compared CD146-/Low and CD146High cells under clonal and non-clonal (sorted MSCs) conditions to determine whether this expression is associated with specific functions. CD146-/Low and CD146High MSCs did not differ in colony-forming unit-fibroblast number, osteogenic and adipogenic differentiation or in vitro hematopoietic supportive activity. However, CD146-/Low clones proliferated slightly but significantly faster than did CD146High clones. In addition, a strong expression of CD146 molecule was associated with a commitment towards a vascular smooth muscle cell lineage with upregulation of calponin-1 expression. Thus, within a bone-marrow MSC population, certain subpopulations characterized by high expression of CD146, are committed toward a vascular smooth muscle cell lineage.
CD146 expression on mesenchymal stem cells is associated with their vascular smooth muscle commitment.
Specimen part, Subject
View SamplesWe have studied the plasma membrane protein phenotype of human culture-amplified and native Bone Marrow Mesenchymal Stem Cells (BM MSCs). We have found, using microarrays and flow cytometry, that cultured cells express specifically 113 transcripts and 17 proteins that were not detected in hematopoietic cells. These antigens define a lineage-homogenous cell population of mesenchymal cells, clearly distinct from the hematopoietic lineages, and distinguishable from other cultured skeletal mesenchymal cells (periosteal cells and synovial fibroblasts). Among the specific membrane proteins present on cultured MSCs, 9 allowed the isolation from BM mononuclear cells of a minute population of native MSCs. The enrichment in Colony-Forming Units-Fibroblasts was low for CD49b, CD90 and CD105, but high for CD73, CD130, CD146, CD200 and integrin alphaV/beta5. Additionally, the expression of CD73, CD146 and CD200 was down-regulated in differentiated cells. The new marker CD200, because of its specificity and immunomodulatory properties, deserves further in depth studies.
Specific plasma membrane protein phenotype of culture-amplified and native human bone marrow mesenchymal stem cells.
Sex, Age, Specimen part, Treatment
View Samples