Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising anti-cancer protein that can specifically kill tumor cells while sparing healthy ones. Emerging evidences suggest that TRAIL resistance in cancers is associated with aberrant expression of the key components of the apoptotic program. However, how these components are regulated at the epigenetic level is not understood. In this study, we aimed to identify novel epigenetic mechanisms regulating TRAIL response in Glioblastoma Multiforme (GBM) by a short-hairpin RNA (shRNA) screen. We employed an shRNA-mediated loss of function approach to interrogate the role of 48 genes in DNA and histone modification pathways. From this we identified KDM2B, an H3K36-specific demethylase, as a novel regulator of TRAIL response. Accordingly, silencing of KDM2B significantly enhanced TRAIL sensitivity, the activation of Caspase-8, Caspase-3, Caspase-7, and cleavage of PARP. KDM2B knockdown also accelerated the apoptosis process, as revealed by live cell imaging experiments. Moreover, simultaneous knockdown of the methyltransferases responsible for generating the histone marks removed by KDM2B significantly recovered the cell death phenotype observed with KDM2B inhibition. To decipher the downstream molecular pathways regulated by KDM2B, levels of apoptosis-related genes were examined by RNA-sequencing and quantitative PCR upon KDM2B loss, which revealed de-repression of pro-apoptotic genes HRK, caspase-7, and DR4 and repression of anti-apoptotic gene Mcl-1. The apoptosis phenotype was dependent on HRK upregulation, as HRK knockdown significantly abrogated the sensitization. In vivo, KDM2B-silenced tumors exhibited slower growth and reduced angiogenic capacity compared to controls. Taken together, our findings suggest a novel mechanism regulating apoptotic response, where the key apoptosis components are under epigenetic control of KDM2B in GBM cells. Overall design: mRNA profiles of U87MG GBM cells transduced either by control shRNA or shRNA targeting KDM2B were generated by RNA-seq (Illumina HiSeq 2500). 2 biological replicates of shControl and shKDM2B total RNAs were barcoded individually and deep sequenced as 3 technical replicates each in 3 lanes.
KDM2B, an H3K36-specific demethylase, regulates apoptotic response of GBM cells to TRAIL.
Specimen part, Subject
View SamplesThe immortalized human urothelial cell line, UROtsa, was transformed in six parallel cultures with continual passaging in1 M Cd+2 until the cells were able to attain the ability to form colonies in soft agar and subcutaneous tumors in nude mice. The gene expression profiles between cadmium-transformed and control samples were compared and the differentially expressed genes were identified.
Variation of keratin 7 expression and other phenotypic characteristics of independent isolates of cadmium transformed human urothelial cells (UROtsa).
Cell line
View SamplesMesenchymal stromal cells (MSCs) sense and modulate inflammation and represent potential clinical treatment for immune disorders. However, many details of the bidirectional interaction between MSCs and the innate immune comaprtment are still unsolved. Here we describe an unconventional but functional interaction between pro-inflammatory classically activated macrophages (M1M) and MSCs, with CD54 playing a central role. CD54 was upregulated and enriched specifically at the contact area between M1M and MSCs. Moreover, the specific interaction induced calcium signaling and increased the immunosuppressive capacities of MSCs dependent on CD54 mediation. Our data demonstrate that MSCs can detect an inflammatory microenvironment via a direct and physical interaction with innate immune cells. This finding opens new perspectives for MSC-based cell therapy.
CD54-Mediated Interaction with Pro-inflammatory Macrophages Increases the Immunosuppressive Function of Human Mesenchymal Stromal Cells.
Specimen part
View SamplesBone-marrow mesenchymal stem cells (MSCs) are plastic adherent cells that can differentiate into various tissue lineages, including osteoblasts, adipocytes and chondrocytes. However, this progenitor property is not shared by all cells within the MSC population. In addition, MSCs vary in their proliferation capacities and expression of markers. Because of heterogeneity of CD146 expression in the MSC population, we compared CD146-/Low and CD146High cells under clonal and non-clonal (sorted MSCs) conditions to determine whether this expression is associated with specific functions. CD146-/Low and CD146High MSCs did not differ in colony-forming unit-fibroblast number, osteogenic and adipogenic differentiation or in vitro hematopoietic supportive activity. However, CD146-/Low clones proliferated slightly but significantly faster than did CD146High clones. In addition, a strong expression of CD146 molecule was associated with a commitment towards a vascular smooth muscle cell lineage with upregulation of calponin-1 expression. Thus, within a bone-marrow MSC population, certain subpopulations characterized by high expression of CD146, are committed toward a vascular smooth muscle cell lineage.
CD146 expression on mesenchymal stem cells is associated with their vascular smooth muscle commitment.
Specimen part, Subject
View SamplesUHRF1 is an essential regulator of DNA methylation that is highly expressed in many cancers. Using transgenic zebrafish, cultured cells and human tumors, we demonstrate that UHRF1 is an oncogene. RNAseq was used to assess the variation in gene expression between control and experimental samples. Overall design: Total small RNA from 2 batches of Tg(fabp10:has.UHRF1-GFP)High and age matched Tg(fabp10:nls-mCherry) control 5 dpf zebrafish livers was purified for preparation of high-throughput sequencing libraries.
UHRF1 overexpression drives DNA hypomethylation and hepatocellular carcinoma.
No sample metadata fields
View SamplesWe have studied the plasma membrane protein phenotype of human culture-amplified and native Bone Marrow Mesenchymal Stem Cells (BM MSCs). We have found, using microarrays and flow cytometry, that cultured cells express specifically 113 transcripts and 17 proteins that were not detected in hematopoietic cells. These antigens define a lineage-homogenous cell population of mesenchymal cells, clearly distinct from the hematopoietic lineages, and distinguishable from other cultured skeletal mesenchymal cells (periosteal cells and synovial fibroblasts). Among the specific membrane proteins present on cultured MSCs, 9 allowed the isolation from BM mononuclear cells of a minute population of native MSCs. The enrichment in Colony-Forming Units-Fibroblasts was low for CD49b, CD90 and CD105, but high for CD73, CD130, CD146, CD200 and integrin alphaV/beta5. Additionally, the expression of CD73, CD146 and CD200 was down-regulated in differentiated cells. The new marker CD200, because of its specificity and immunomodulatory properties, deserves further in depth studies.
Specific plasma membrane protein phenotype of culture-amplified and native human bone marrow mesenchymal stem cells.
Sex, Age, Specimen part, Treatment
View SamplesThis is a whole transcriptome sequencing data of rat testis. YY1 gene was knocked down in Experimental animals under Sertoli cell specific and puberty specific promoter. These knockdown animals were compared with the control animals.
An integrated transcriptomics-guided genome-wide promoter analysis and next-generation proteomics approach to mine factor(s) regulating cellular differentiation.
No sample metadata fields
View SamplesIn this dataset, we included expression data obtained from 30 resected human PDAC tumors, to examine what genes are differentially expressed in different cohorts that might lead to various outcomes
Identification of unique neoantigen qualities in long-term survivors of pancreatic cancer.
Specimen part
View SamplesThe epidemic character of community-associated methicillin resistant Staphylococcus aureus (CA-MRSA), especially the geographically widespread clone USA300, is poorly understood. USA300 isolates carry a type IV staphylococcal chromosomal cassette mec (SCCmec) element conferring -lactam antibiotic class resistance and a putative pathogenicity island, ACME (arginine catabolic mobile element).
The arginine catabolic mobile element and staphylococcal chromosomal cassette mec linkage: convergence of virulence and resistance in the USA300 clone of methicillin-resistant Staphylococcus aureus.
No sample metadata fields
View SamplesWe previously identified multipotent stem cells within the lamina propria of the human olfactory mucosa, located in the nasal cavity. We also demonstrated that this cell type differentiates into neural cells and improves locomotor behavior after transplantation in a rat model of Parkinsons disease. Yet, next to nothing is known about their specific stemness characteristics. We therefore devised a study aiming to compare olfactory lamina propria stem cells from 4 individuals to bone marrow mesenchymal stem cells from 4 age- and gendermatched individuals. Using pangenomic microarrays and immunostaining with 34 cell surface marker antibodies, we show here that olfactory stem cells are closely related to bone marrow stem cells. However, olfactory stem cells exhibit also singular traits. By means of techniques such as proliferation assay, cDNA microarrays, RT-PCR, in vitro and in vivo differentiation, we report that, when compared to bone marrow stem cells, olfactory stem cells display i) a high proliferation rate; ii) a propensity to differentiate into osseous cells and iii) a disinclination to give rise to chondrocytes and adipocytes. Since peripheral olfactory stem cells originate from a neural crest-derived tissue and, as shown here, exhibit an increased expression of neural cellrelated genes, we propose to name them olfactory ecto-mesenchymal stem cells (OE-MSC). Further studies are now required to corroborate the therapeutic potential of OE-MSCs in animal models of bone and brain diseases.
The human nose harbors a niche of olfactory ectomesenchymal stem cells displaying neurogenic and osteogenic properties.
Sex, Age, Specimen part, Treatment
View Samples