Curcumin, a yellow pigment extracted from the rhizome of the plant Curcuma longa (turmeric) has been widely used as a spice and herbal medicine in Asia. It has been suggested to have many biological activities such as anti-oxidative, anti-inflammatory, anti-cancer, chemopreventive, and anti-neurodegenerative properties. We evaluated the impact of curcumin on lifespan, fecundity, feeding rate, oxidative stress, locomotion and gene expression in two different wild type Drosophila melanogaster strains, Canton-S and Ives, under two different experimental conditions. We report that curcumin extended the lifespan of two different strains of Drosophila and was accompanied by protection against oxidative stress, improvement in locomotion and chemopreventive effects. Curcumin also modulated the expression of several aging related genes (genes with age-dependent changes in gene expression) such as mth, thor, InR, and JNK.
Curcumin extends life span, improves health span, and modulates the expression of age-associated aging genes in Drosophila melanogaster.
Sex, Age
View SamplesDysregulation of professional APC has been postulated as a major mechanism underlying Ag-specific T cell hyporesponsiveness in patients with patent filarial infection. To address the nature of this dysregulation, dendritic cells (DC) and macrophages generated from elutriated monocytes were exposed to live microfilariae (mf), the parasite stage that circulates in blood and is responsible for most immune dysregulation in filarial infections. DC exposed to mf for 2496 h showed a marked increase in cell death and caspase-positive cells compared with unexposed DC, while mf exposure did not induce apoptosis in macrophages. Interestingly, 48 h exposure of DC to mf induced mRNA expression of the pro-apoptotic gene TRAIL and both mRNA and protein expression of TNF-alpha. mAb to TRAIL-R2, TNF-R1, or TNF-alpha partially reversed mf-induced cell death in DC, as did knocking down the receptor for TRAIL-R2 using small interfering RNA. Mf also induced gene expression of BH3-interacting domain death agonist (Bid) and protein expression of cytochrome c in DC; mf-induced cleavage of Bid could be shown to induce release of cytochrome c, leading to activation of caspase 9. Our data suggest that mf induce DC apoptosis in a TRAIL- and TNF-alpha-dependent fashion.
Induction of TRAIL- and TNF-alpha-dependent apoptosis in human monocyte-derived dendritic cells by microfilariae of Brugia malayi.
Sex, Treatment, Race
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Human β-defensin 3 affects the activity of pro-inflammatory pathways associated with MyD88 and TRIF.
Specimen part, Treatment, Time
View SamplesWe examine the global effect of hBD3 on transcription in TLR4-stimulated macrophages and for the first time show that hBD3 inhibits the transcription of critical pro-inflammatory genes.
Human β-defensin 3 affects the activity of pro-inflammatory pathways associated with MyD88 and TRIF.
Specimen part, Treatment, Time
View SamplesGene expression profiling for identification of genes regulated by DNA methylation
Genome-wide screening of genes regulated by DNA methylation in colon cancer development.
Specimen part, Cell line
View SamplesActivation of glycolytic genes by HIF-1 is considered critical for metabolic adaptation to hypoxia. We found that HIF-1 also actively suppresses glucose metabolism through the tricarboxylic acid cycle (TCA) by directly trans-activating the gene encoding pyruvate dehydrogenase kinase 1 (PDK1). PDK1 inactivates the TCA cycle enzyme, pyruvate dehydrogenase (PDH), which converts pyruvate to acetyl-CoA. Forced PDK1 expression in hypoxic HIF-1-null cells increases ATP levels, attenuates hypoxic ROS generation and rescues these cells from hypoxia-induced apoptosis. These studies reveal a novel hypoxia-induced metabolic switch that shunts glucose metabolites from the mitochondria to glycolysis to maintain ATP production and to prevent toxic ROS production.
HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia.
No sample metadata fields
View SamplesGene expression heterogeneity in the pluripotent state of mouse embryonic stem cells (mESCs) has been increasingly well-characterized. In contrast, exit from pluripotency and lineage commitment have not been studied systematically at the single-cell level. Here we measured the gene expression dynamics of retinoic acid driven mESC differentiation using an unbiased single-cell transcriptomics approach. We found that the exit from pluripotency marks the start of a lineage bifurcation as well as a transient phase of susceptibility to lineage specifying signals. Our study revealed several transcriptional signatures of this phase, including a sharp increase of gene expression variability and a handover between two classes of transcription factors. In summary, we provide a comprehensive analysis of lineage commitment at the single cell level, a potential stepping stone to improved lineage control through timing of differentiation cues. Overall design: Bulk and single-cell RNA-seq (SCRB-seq and SMART-seq) of mouse embryonic stem cells after different periods of continuous exposure to retinoic acid. Bulk RNA-seq of cell lines derived after retinoic exposure and after differentiation with retinoic acid and MEK inhibitor combined.
Dynamics of lineage commitment revealed by single-cell transcriptomics of differentiating embryonic stem cells.
Cell line, Subject
View SamplesAbnormal development of the prefrontal cortex (PFC) is associated with a number of neuropsychiatric disorders that have an onset in childhood or adolescence. Although the basic laminar structure of the PFC is established in utero, extensive remodeling continues into adolescence. To map the overall pattern of changes in cortical gene transcripts during post-natal development, we made serial measurements of mRNA levels in mouse PFC using oligonucleotide microarrays. We observed changes in mRNA transcripts consistent with known post-natal morphological and biochemical events. Overall, most transcripts that changed significantly showed a progressive decrease in abundance after birth, with the majority of change between post-natal weeks 2 and 4. Genes with cell proliferative, cytoskeletal, extracellular matrix, plasma membrane lipid / transport, protein folding, and regulatory functions had decreases in mRNA levels. Quantitative PCR verified the microarray results for six selected genes: DNA methyltransferase 3A (Dnmt3a), procollagen, type III, alpha 1 (Col3a1), solute carrier family 16 (monocarboxylic acid transporters), member 1 (Slc16a1), MARCKS-like 1 (Marcksl1), nidogen 1 (Nid1) and 3-hydroxybutyrate dehydrogenase (heart, mitochondrial) (Bdh).
Microarray analysis of the developing cortex.
No sample metadata fields
View SamplesWe demonstrated that, four weeks after the pulmonary artery banding (PAB) operation, rats could be divided into two groups: an F+ group in which the fibrotic area occupied more than 6.5% of the whole area of the heart tissues, and an F- group in which the fibrotic area occupied less than 6.5% of this area.
Fibrosis growth factor 23 is a promoting factor for cardiac fibrosis in the presence of transforming growth factor-β1.
Sex, Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Frequent MYC coamplification and DNA hypomethylation of multiple genes on 8q in 8p11-p12-amplified breast carcinomas.
Age, Specimen part
View Samples