This SuperSeries is composed of the SubSeries listed below.
LITAF, a BCL6 target gene, regulates autophagy in mature B-cell lymphomas.
Specimen part, Cell line, Treatment
View SamplesUsing different surface markers it has been possible to isolate lymphoid lineage-biased progentors and test their potential in vivo and in vitro. Here we apply single cell sequencing of lymphoid progenitors to obtain further insights into differentiation and commitment to the lymphoid lineage. Overall design: Single cells from the bone marrow from various stages during lymphoid differentiation were sorted into 384-well plates based on their surface marker expression of Flt3, Sca-1 and c-Kit and processed using a modified version of the CEL-Seq2 protocol (Hashimshony et al. 2016, Genome Biology, DOI: 10.1186/s13059-016-0938-8). In addition the original version of the CEL-Seq2 protoco and thel modified versions with different volume reductions and were compared using murine embryonic stem cells.
FateID infers cell fate bias in multipotent progenitors from single-cell RNA-seq data.
Specimen part, Cell line, Subject
View SamplesCitrus greening or huanglongbing (HLB) is a devastating disease of citrus. HLB is associated with the phloem-limited fastidious prokaryotic alpha-proteobacterium Candidatus Liberibacter spp. In this report, we used sweet orange (Citrus sinensis) leaf tissue infected with 'Ca. Liberibacter asiaticus' and compared this with healthy controls.
Response of sweet orange (Citrus sinensis) to 'Candidatus Liberibacter asiaticus' infection: microscopy and microarray analyses.
Specimen part
View SamplesMicroglia are brain immune cells that constantly survey their environment to maintain homeostasis. Enhanced microglial reactivity and proliferation are typical hallmarks of neurodegenerative diseases. Whether specific disease-linked microglial subsets exist during the entire course of neurodegeneration, including the recovery phase, is currently unclear. Taking a single-cell RNA-sequencing approach in a susceptibility gene-free model of nerve injury, we identified a microglial subpopulation that upon acute neurodegeneration shares a conserved gene regulatory profile compared to previously reported chronic and destructive neurodegeneration transgenic mouse models. Our data also revealed rapid shifts in gene regulation that defined microglial subsets at peak and resolution of neurodegeneration. Finally, our discovery of a unique transient microglial subpopulation at the onset of recovery may provide novel targets for modulating microglia-mediated restoration of brain health. Overall design: scRNA-Seq was performed on microglial cells isolated from the ipsilateral and contralateral ventral pons of CX3CR1GFP/wt mice that underwent unilateral facial nerve axotomy at 12 weeks of age. The contralateral ventral pons of un-operated 12-week-old CX3CR1GFP/wt was used as baseline control (Day 0 post nerve transection) for the analysis. Three replicates were used per time point (Day 0, 7 and 30 post axotomy). mCEL-Seq2 protocol was used for single cell sequencing (Hashimshony et al. 2016, Herman et al. 2018).
Unique microglia recovery population revealed by single-cell RNAseq following neurodegeneration.
Age, Specimen part, Cell line, Subject
View SamplesTo analyze roles of transcription factor Fezf2 in retinal development, knockout mouse of Fezf2 was generated, and gene expression pattern of Fezf2-KO retina and control retina was examined by RNA-seq. Overall design: To analyze roles of transcription factor Fezf2 in retinal development, knockout mouse of Fezf2 was generated, and gene expression pattern of Fezf2-KO retina and control retina was examined by RNA-seq.
Pivotal roles of Fezf2 in differentiation of cone OFF bipolar cells and functional maturation of cone ON bipolar cells in retina.
Specimen part, Subject
View SamplesWe perfomed single-cell RNA-sequnecing of around 10,000 cells from normal human liver tissue to construct a human liver cell atlas. We reveal previously unknown subtypes in different cell type compartments. We also use our normal liver cell atlas to infer perturbed phenoytpes of cells from HCC samples, human cells engrafted into a mouse liver and liver organoids. Overall design: Single cells were isolated from human liver resection specimens and then sorted by FACS into 384 well plates in a unbiased way and on the basis of cell surface markers for distinct cell types. ScRNA-seq was done using the mCelSeq2 protocol cellbarcodes_cellid.csv Supplemetary file contains cellds and one of the 192 unique cellbarcode associated with the cellid.
A human liver cell atlas reveals heterogeneity and epithelial progenitors.
Specimen part, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Expression of MALT1 oncogene in hematopoietic stem/progenitor cells recapitulates the pathogenesis of human lymphoma in mice.
Specimen part, Disease
View SamplesAttempts at modeling chromosomal translocations involving MALT1 gene, hallmarks of human mucosa-associated lymphoid tissue (MALT) lymphoma, have failed to reproduce the disease in mice. Here we describe a transgenic model in which MALT1 expression was targeted to mouse hematopoietic stem/progenitor cells. In Sca1-MALT1 mice, MALT1 deregulation activated the NF-kappaB pathway in Sca1+ cells, promoting selective B-cell differentiation and mature lymphocyte accumulation in extranodal tissues, progressively leading to the development of clonal B-cell lymphomas. These tumors recapitulated the histopathological features of human MALT lymphomas, presenting typical lymphoepithelial lesions and plasmacytic differentiation. Transcriptional profiling of Sca1-MALT1 murine lymphomas revealed overlapping molecular signatures with human MALT lymphomas, including MALT1-mediated NF-kappaB activation, pro-inflammatory signaling and XBP1-induced plasmacytic differentiation. Moreover, murine Malt1 showed proteolytic activity by cleaving Bcl10 in Sca1-MALT1 lymphomas. Our novel technological approach has allowed modeling human MALT lymphoma in mice, which represent unique tools study MALT lymphoma biology and evaluate anti-MALT1 therapies.
Expression of MALT1 oncogene in hematopoietic stem/progenitor cells recapitulates the pathogenesis of human lymphoma in mice.
Specimen part, Disease
View SamplesComparison of gene expression profiling analysis of bone marrow isolated CD34+ cells from patients with MALT lymphoma vs. healthy individuals revealed a large number of differentially expressed genes that included NF-kB target genes, genes involved in inflamatory signalling and immunoglobulin genes, suggesting an early lymphoid B-cell priming.
Expression of MALT1 oncogene in hematopoietic stem/progenitor cells recapitulates the pathogenesis of human lymphoma in mice.
Specimen part, Disease, Disease stage
View SamplesAttempts at modeling chromosomal translocations involving MALT1 gene, hallmarks of human mucosa-associated lymphoid tissue (MALT) lymphoma, have failed to reproduce the disease in mice. Here we describe a transgenic model in which MALT1 expression was targeted to mouse hematopoietic stem/progenitor cells. In Sca1-MALT1 mice, MALT1 deregulation activated the NF-kappaB pathway in Sca1+ cells, promoting selective B-cell differentiation and mature lymphocyte accumulation in extranodal tissues, progressively leading to the development of clonal B-cell lymphomas. These tumors recapitulated the histopathological features of human MALT lymphomas, presenting typical lymphoepithelial lesions and plasmacytic differentiation. Transcriptional profiling of Sca1-MALT1 murine lymphomas revealed overlapping molecular signatures with human MALT lymphomas, including MALT1-mediated NFkappaB activation, pro-inflammatory signaling and XBP1-induced plasmacytic differentiation. Moreover, murine Malt1 showed proteolytic activity by cleaving Bcl10 in Sca1-MALT1 lymphomas. Our novel technological approach has allowed modeling human MALT lymphoma in mice, which represent unique tools study MALT lymphoma biology and evaluate anti-MALT1 therapies.
Expression of MALT1 oncogene in hematopoietic stem/progenitor cells recapitulates the pathogenesis of human lymphoma in mice.
Specimen part, Disease
View Samples