This SuperSeries is composed of the SubSeries listed below.
Evidence of perturbations of cell cycle and DNA repair pathways as a consequence of human and murine NF1-haploinsufficiency.
Sex, Age, Specimen part
View SamplesNeurofibromatosis type 1 (NF1) is a common monogenic tumor-predisposition disorder that arises secondary to mutations in the tumor suppressor gene NF1. Haploinsufficiency of NF1 fosters a permissive tumorigenic environment through changes in signalling between cells; however, the intracellular mechanisms for this tumor-promoting effect are less clear. We hypothesized that the genetic effects of NF1-haploinsufficiency may be discerned by comparison of genome-wide transcriptional profiling in somatic, non-tumor cells (LCLs) from NF1-affected and unaffected individuals.
Evidence of perturbations of cell cycle and DNA repair pathways as a consequence of human and murine NF1-haploinsufficiency.
Sex, Age, Specimen part
View SamplesNeurofibromatosis type 1 (NF1) is a common monogenic tumor-predisposition disorder that arises secondary to mutations in the tumor suppressor gene NF1. Haploinsufficiency of NF1 fosters a permissive tumorigenic environment through changes in signalling between cells; however, the intracellular mechanisms for this tumor-promoting effect are less clear. We hypothesized that the genetic effects of NF1-haploinsufficiency may be discerned by comparison of genome-wide transcriptional profiling in somatic, non-tumor cells from NF1-affected and unaffected individuals. As a cross-species filter for heterogeneity, we compared the results from two human kindreds to whole-genome transcriptional profiling in spleen-derived B-cells from age- and gender-matched Nf1+/- and wild-type mice.
Evidence of perturbations of cell cycle and DNA repair pathways as a consequence of human and murine NF1-haploinsufficiency.
Sex, Age, Specimen part
View SamplesNeurofibromatosis type 1 (NF1) is a common monogenic tumor-predisposition disorder that arises secondary to mutations in the tumor suppressor gene NF1. Haploinsufficiency of NF1 fosters a permissive tumorigenic environment through changes in signalling between cells; however, the intracellular mechanisms for this tumor-promoting effect are less clear. We hypothesized that the genetic effects of NF1-haploinsufficiency may be discerned by comparison of genome-wide transcriptional profiling in somatic, non-tumor cells (LCLs) from NF1-affected and unaffected individuals.
Evidence of perturbations of cell cycle and DNA repair pathways as a consequence of human and murine NF1-haploinsufficiency.
Sex, Age, Specimen part
View SamplesDuring HIV-1 infection, there is a massive perturbation of host gene expression, but as yet, genome-wide studies have not identified host genes affecting HIV-1 replication in lymphatic tissue, the primary site of virus-host interactions. In this study, we isolated RNA from the inguinal lymph nodes of 22 HIV-1-infected individuals and utilized a microarray approach to identify host genes critically important for viral replication in lymphatic tissue by examining gene expression associated with viral load. Strikingly, ~95% of the transcripts (558) in this data set (592 transcripts total) were negatively associated with HIV-1 replication. Genes in this subset (1) inhibit cellular activation/proliferation (ex.: TCFL5, SOCS5 and SCOS7, KLF10), (2) promote heterochromatin formation (ex.: HIC2, CREBZF, ZNF148/ZBP-89), (3) increase collagen synthesis (ex.: PLOD2, POSTN, CRTAP), and (4) reduce cellular transcription and translation. Potential anti-HIV-1 restriction factors were also identified (ex.: NR3C1, HNRNPU, PACT). Only ~5% of the transcripts (34) were positively associated with HIV-1 replication. Paradoxically, nearly all these genes function in innate and adaptive immunity, particularly highlighting a heightened interferon system. The predominance of negative correlations as well as the disconnect between host defenses and viral load point to the importance of genes that regulate target cell activation and genes that code for potentially new restriction factors as determinants of viral load rather than conventional host defenses.
Host genes associated with HIV-1 replication in lymphatic tissue.
Sex, Age, Specimen part, Race
View SamplesNADPH-cytochrome P450 reductase (CPR) is important for the functions of many enzymes, such as microsomal cytochrome P450 (P450) monooxygenases and heme oxygenases. Two mouse models with deficient CPR expression in adults were recently generated in this laboratory: liver-Cpr-null (with liver-specific Cpr deletion) (Gu et al., J. Biol. Chem., 278, 2589525901, 2003) and Cpr-low (with reduced CPR expression in all organs examined) (Wu et al. J. Pharmacol. Expt. Ther. 312, 35-43, 2005). The phenotypes included a reduced serum cholesterol level and an induction of hepatic P450 in both models, and hepatomegaly and fatty liver in the liver-Cpr-null mouse alone. Our aim was to identify hepatic gene-expression changes related to these phenotypes. Cpr-lox mice, which have normal CPR expression (Wu et al., Genesis, 36, 177-181, 2003.), were used as the control in microarray analysis. A detailed analysis of the gene-expression changes in lipid metabolism and transport pathways revealed potential mechanisms, such as an increased activation of constitutive androstane receptor (CAR) and a decreased activation of peroxisomal proliferators activated receptor alpha (PPAR-gamma) by precursors of cholesterol biosynthesis, that underlie common changes (e.g., induction of multiple P450s and inhibition of genes for fatty acids metabolism) in response to CPR-loss in the two mouse models. Moreover, we also uncovered model-specific gene-expression changes, such as the induction of a lipid translocase (CD36 antigen) and the suppression of carnitine O-palmitoyltransferase 1 (CPT1a) and acyl-CoA synthetase long-chain family member 1 (Acsl1), that are potentially responsible for the severe hepatic lipidosis observed in liver-Cpr-null, but not Cpr-low mice.
Hepatic gene expression changes in mouse models with liver-specific deletion or global suppression of the NADPH-cytochrome P450 reductase gene. Mechanistic implications for the regulation of microsomal cytochrome P450 and the fatty liver phenotype.
No sample metadata fields
View SamplesUntreated HIV-1 infection progresses through acute and asymptomatic stages to AIDS. While each of the three stages has well-known clinical, virologic and immunological characteristics, much less is known of the molecular mechanisms underlying each stage. Here we report lymphatic tissue microarray analyses revealing for the first time stage-specific patterns of gene expression during HIV-1 infection. We show that while there is a common set of key genes with altered expression throughout all stages, each stage has a unique gene-expression signature. The acute stage is most notably characterized by increased expression of hundreds of genes involved in immune activation, innate immune defenses (e.g.MDA-5, TLR-7 and -8, PKR, APOBEC3B, 3F, 3G), adaptive immunity, and in the pro-apoptotic Fas-Fas-L pathway. Yet, quite strikingly, the expression of nearly all acute-stage genes return to baseline levels in the asymptomatic stage, accompanying partial control of infection. In the AIDS stage, decreased expression of numerous genes involved in T cell signaling identifies genes contributing to T cell dysfunction. These common and stage-specific, gene-expression signatures provide new insights into the molecular mechanisms underlying the host response and the slow, natural course of HIV-1 infection.
Microarray analysis of lymphatic tissue reveals stage-specific, gene expression signatures in HIV-1 infection.
Sex, Age, Specimen part, Disease, Disease stage, Race, Subject
View SamplesChronic obstructive pulmonary disease (COPD) is an inflammatory lung disease with complex pathological features and largely unknown etiologies. Identification and validation of biomarkers for this disease could facilitate earlier diagnosis, appreciation of disease subtypes and/or determination of response to therapeutic intervention. To identify gene expression markers for COPD, we performed genome-wide expression profiling of lung tissue from 56 subjects using the Affymetrix U133 Plus 2.0 array. Lung function measurements from these subjects ranged from normal, un-obstructed to severely obstructed. Analysis of differential expression between cases (FEV1<70%, FEV1/FVC<0.7) and controls (FEV1>80%, FEV1/FVC>0.7) identified a set of 65 probe sets representing discrete markers associated with COPD. Correlation of gene expression with quantitative measures of airflow obstruction (FEV1 or FEV1/FVC) identified a set of 220 probe sets. A total of 31 probe sets were identified that showed evidence of significant correlation with quantitative traits and differential expression between cases and controls.
Molecular biomarkers for quantitative and discrete COPD phenotypes.
Race
View SamplesAdipose inflammation is a key component of cardiometabolic disease. We used microarray to profile gene expression changes in adipose tissue following administration of LPS (3ng/kg IV) to healthy human volunteers.
Integrative genomics identifies 7p11.2 as a novel locus for fever and clinical stress response in humans.
Specimen part
View SamplesExpression data were generated on 136 subjects from the COPDGene study using Affymetrix microarrays. Multiple linear regression with adjustment for covariates (gender, age, body mass index, family history, smoking status, pack years) was used to identify candidate genes and Ingenuity Pathway Analysis was used to identify candidate pathways.
Peripheral blood mononuclear cell gene expression in chronic obstructive pulmonary disease.
Sex, Specimen part
View Samples