SoxR and SoxS constitute an intracellular signal response system that rapidly detects changes in superoxide levels and modulates gene expression in E. coli.
Rapid changes in gene expression dynamics in response to superoxide reveal SoxRS-dependent and independent transcriptional networks.
No sample metadata fields
View SamplesOur study describes in detail the role of Bmp2 during cardiac valve developmnent and its implication in Notch pathway activation. Overall design: Hearts were isolated from WT and Bmp2GOF;Nkx2.5-Cre mouse embryos at stage E9.5 and their expression profile characterized by RNA-seq
Bmp2 and Notch cooperate to pattern the embryonic endocardium.
Specimen part, Subject
View SamplesThe zebrafish heart remarkably regenerates after a severe ventricular damage followed by inflammation, fibrotic tissue deposition and removal concomitant with cardiac muscle replacement. We have investigated the role of the endocardium in this regeneration process. 3D-whole mount imaging in injured hearts revealed that GFP-labelled endocardial cells in ET33mi-60A transgenic fish become rapidly activated and highly proliferative at 3 days post cryoinjury (dpci). Endocardial cells extensively expand within the injury site and organize to form a coherent structure at 9 dpci that persists throughout the regeneration process. Upon injury, endocardial cells strongly up-regulate the Notch pathway ligand delta like4 (dll4) and the Notch receptors notch1b, notch2 and notch3. Expression profiling showed that Notch signalling inhibition affects endocardial gene expression and genes related to extracellular matrix remodelling and inflammation. Gain- and loss-of-function experiments revealed that Notch is required for the organization of the endocardium, attenuation of the inflammatory response and cardiomyocyte proliferation. These results demonstrate a novel structural and signalling role for the endocardium during heart regeneration. Overall design: RNA was extracted from apical tip of heart ventricles 72h after cryoinjured adult zebrafish heart treated with DMSO (Controls) or RO gamma secretase inhibitor at 24 and 48h post injury.
Notch signalling restricts inflammation and <i>serpine1</i> expression in the dynamic endocardium of the regenerating zebrafish heart.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Systems genetics identifies a co-regulated module of liver microRNAs associated with plasma LDL cholesterol in murine diet-induced dyslipidemia.
No sample metadata fields
View SamplesGenetic variation, in addition to environmental influences like diet, can govern the expression levels of microRNAs (miRNAs). MiRNAs are commonly found to operate cooperatively in groups to regulate gene expression. To investigate this, we combined small RNA sequencing, clinical phenotypes, and microarray data measuring gene expression from an outbred mouse model, the Diversity Outbred population. In the DO population, each individual has a distinct genome that is a mosaic of 8 inbred founder strains. We used these data to identify co-regulated modules of miRNAs and genes that are influenced by genetics and diet, and identify relationships between the modules and phenotypes in over 200 DO mice.
Systems genetics identifies a co-regulated module of liver microRNAs associated with plasma LDL cholesterol in murine diet-induced dyslipidemia.
No sample metadata fields
View SamplesHigh cholesterol diet and xenobiotic treatment induce changes in cholesterol homeostasis and drug metabolism. Mice were either 7 days on high cholesterol diet or were treated with phenobarbital. Liver samples were anayzed using Affymetrix GeneChip MOE430A.
The Sterolgene v0 cDNA microarray: a systemic approach to studies of cholesterol homeostasis and drug metabolism.
Sex, Age, Specimen part, Treatment
View SamplesWith the aim of identifying new pathways and genes regulated by PTH(1-34) and PTH-related protein 1-141 [PTHrP(1-141)] in osteoblasts, this study was carried out using a mouse marrow stromal cell line, Kusa 4b10, that acquires features of the osteoblastic phenotype in long-term culture conditions. After the appearance of functional PTH receptor 1 (PTHR1) in Kusa 4b10 cells, they were treated with either PTH(1-34) or PTHrP(1-141), and RNA was subjected to Affymetrix whole mouse genome array.
EphrinB2 regulation by PTH and PTHrP revealed by molecular profiling in differentiating osteoblasts.
Specimen part, Cell line
View SamplesBackground: Arrhythmogenic cardiomyopathy (ACM) is a genetic autosomal disease characterized by abnormal cell-cell adhesion, cardiomyocyte death, progressive fibro-adipose replacement of the myocardium, arrhythmias and sudden death. Several different cell types contribute to the pathogenesis of ACM, including, as recently described, cardiac stromal cells (CStCs). In the present study, we aim to identify ACM-specific expression profiles of human CStCs derived from endomyocardial biopsies of ACM patients and healthy individuals employing TaqMan Low Density Arrays for miRNA expression profiling, and high throughput sequencing for gene expression quantification. Results: We identified 5 miRNAs and 272 genes as significantly differentially expressed. Both the differentially expressed genes as well as the target genes of the ACM-specific miRNAs were found to be enriched in cell adhesion related biological processes. Functional similarity and protein interaction based network analyses performed on the identified deregulated genes, miRNA targets and known ACM-causative genes revealed clusters of highly related genes involved in cell adhesion, extracellular matrix organization, lipid transport and ephrin receptor signaling. Conclusions: We determined for the first time the coding and non-coding transcriptome characteristic of ACM cardiac stromal cells, finding evidence for a potential contribution of miRNAs to ACM pathogenesis or phenotype maintenance. Besides known pathways, we identified also deregulation of genes encoding ephrin receptors and ephrins, thus suggesting a potential involvement of Eph-ephrin signaling in CStCs from ACM hearts. Overall design: Expression profiles of cardiac stromal cells from 3 ACM patients were compared against those of cardiac stromal cells from 3 healthy individuals.
The arrhythmogenic cardiomyopathy-specific coding and non-coding transcriptome in human cardiac stromal cells.
Sex, Disease, Subject
View SamplesAim: To determine the role of NOTCH during the response-to-injury and subsequent chronic inflammatory process of the arterial wall underlying atherosclerosis. Methods and results: We have generated an endothelial-specific RBPJK depleted mice using the Cdh5 cadherin promoter (ApoE-/-;RBPJflox/flox;Cdh5- CreERT). Endothelial-specific deletion of the Notch effector RBPJK or systemic deletion of the Notch1 receptor in athero-susceptible ApoE-/- mice fed a HC diet for 6 weeks resulted in reduced atherosclerosis in the aortic arch and sinus. Intravital microscopy revealed decreased leukocyte rolling on the endothelium of ApoE-/-;RBPJflox/flox;Cdh5- CreERT, that correlated with the lesser presence of leukocyts and macrophages in the vascular wall. Consistent with this, transcriptome analysis revealed that proinflammatory and endothelial activation pathways were downregulated in atherosclerotic tissue of RBPJk-mutant mice.. Jagged1 signaling upregulation in endothelial cells promotes the physical interaction and nuclear translocation of the intracellular domain of the Notch1 receptor (N1ICD) with NF-kB,. This N1ICD and NF-kB interaction is required for reciprocal transactivation of target genes including vascular cell adhesion molecule-1 (Vcam1). Conclusions: Notch signaling pathway inactivation decreases leukocyte rolling, thereby preventing endothelial dysfunction and vascular inflammation. Thus attenuating Notch signaling may constitute a useful therapeutic strategy for atherosclerosis. Key words: atherosclerosis, endothelium, signaling pathways, Notch, NF-kB, transcriptional regulation Overall design: RNA was isolated from the aortic arches of three ApoE-/-;RBPJflox/flox and three ApoE-/-; RBPJflox/flox;Cdh5-CreERTmice
Endothelial Jag1-RBPJ signalling promotes inflammatory leucocyte recruitment and atherosclerosis.
No sample metadata fields
View SamplesThe anthracycline, doxorubicin (Dox), is widely used in oncology, but it may it may cause a cardiomyopathy which has dismal prognosis and cannot be effectively prevented. The secretome of multipotent human amniotic fluid-derived stem cells (hAFS) has previously been demonstrated to reduce ischemic cardiac damage. Here, it is shown that the hAFS conditioned medium (hAFS-CM) antagonizes senescence and apoptosis of cardiomyocytes and cardiac progenitor cells, two major features of Dox cardiotoxicity. Mechanistic studies with primary mouse neonatal cardiomyocytes reveal that hAFS-CM inhibition of Dox-elicited senescence and apoptosis is paralleled by decreased DNA damage and is associated with nuclear translocation of NF-kB and upregulation of a set of genes controlled by NF-kB, namely Il6 and Cxcl1, which promote cardiomyocyte survival, and Cyp1b1 and Abcb1, which encode for proteins involved in Dox metabolism and efflux, respectively. The PI3K/Akt signaling cascade, upstream of NF-kB, is potently activated by the hAFS-CM and pre-treatment with a PI3K inhibitor abrogates NF-kB accumulation into the nucleus, modulation of its target genes, and prevention of Dox-initiated senescence and apoptosis in response to the hAFS-CM. This work may lay the ground for the development of a stem cell-based paracrine therapy of chemotherapy-related cardiotoxicity.
The human amniotic fluid stem cell secretome effectively counteracts doxorubicin-induced cardiotoxicity.
Specimen part
View Samples