Neuroinflammatory and neuroimmune mechanisms, as exemplified by infiltrating immune cells and activation of resident endothelial/glial cells, respectively, are known to be involved in the establishment and maintenance of chronic pain. An immune system pathway that may be involved in the activation of both immune and glial cells is complement. The complement pathway is made up of a large number of distinct plasma proteins which react with one another to opsonize pathogens and induce a series of inflammatory responses to help fight infection. Cleaved products and complexes produced by complement activation are responsible for a range of effects including mediation of immune infiltration, activation of phagocytes, opsonization/lysis of pathogens and injured cells, and production of vasoactive amines such as histamine and serotonin.
Complement activation in the peripheral nervous system following the spinal nerve ligation model of neuropathic pain.
No sample metadata fields
View SamplesSoxR and SoxS constitute an intracellular signal response system that rapidly detects changes in superoxide levels and modulates gene expression in E. coli.
Rapid changes in gene expression dynamics in response to superoxide reveal SoxRS-dependent and independent transcriptional networks.
No sample metadata fields
View SamplesOur study describes in detail the role of Bmp2 during cardiac valve developmnent and its implication in Notch pathway activation. Overall design: Hearts were isolated from WT and Bmp2GOF;Nkx2.5-Cre mouse embryos at stage E9.5 and their expression profile characterized by RNA-seq
Bmp2 and Notch cooperate to pattern the embryonic endocardium.
Specimen part, Subject
View SamplesThe zebrafish heart remarkably regenerates after a severe ventricular damage followed by inflammation, fibrotic tissue deposition and removal concomitant with cardiac muscle replacement. We have investigated the role of the endocardium in this regeneration process. 3D-whole mount imaging in injured hearts revealed that GFP-labelled endocardial cells in ET33mi-60A transgenic fish become rapidly activated and highly proliferative at 3 days post cryoinjury (dpci). Endocardial cells extensively expand within the injury site and organize to form a coherent structure at 9 dpci that persists throughout the regeneration process. Upon injury, endocardial cells strongly up-regulate the Notch pathway ligand delta like4 (dll4) and the Notch receptors notch1b, notch2 and notch3. Expression profiling showed that Notch signalling inhibition affects endocardial gene expression and genes related to extracellular matrix remodelling and inflammation. Gain- and loss-of-function experiments revealed that Notch is required for the organization of the endocardium, attenuation of the inflammatory response and cardiomyocyte proliferation. These results demonstrate a novel structural and signalling role for the endocardium during heart regeneration. Overall design: RNA was extracted from apical tip of heart ventricles 72h after cryoinjured adult zebrafish heart treated with DMSO (Controls) or RO gamma secretase inhibitor at 24 and 48h post injury.
Notch signalling restricts inflammation and <i>serpine1</i> expression in the dynamic endocardium of the regenerating zebrafish heart.
No sample metadata fields
View SamplesNeuroanatomical methods enable high-resolution mapping of neural circuitry, but do not allow systematic molecular profiling of neurons based on their connectivity. Here, we report the development of a novel approach for molecularly profiling projective neurons. We show that ribosomes can be labeled with a camelid nanobody raised against GFP and that this system can be engineered to selectively capture translating mRNAs from cells expressing GFP. We generated a transgenic mouse encoding a nanobody-ribosomal protein fusion (Syn-NBL10) and used a retrograde virus (CAV) encoding GFP to immunoprecipitate ribosomes from projection neurons. This enabled us to profile neurons projecting to the nucleus accumbens. The current method provides a new means for profiling neurons based on their projections. Overall design: Translating mRNAs immunoprecipitated from neurons projecting to the nucleus accumbens. Each Input and IP sample corrspond to a pooled group of 6 mice.
Molecular profiling of neurons based on connectivity.
No sample metadata fields
View SamplesNKL homeobox genes encode developmental transcription factors regulating basic processes in cell differentiation. According to their physiological expression pattern in early hematopoiesis and B-cell development, particular members of this homeobox gene subclass constitute an NKL-code. These B-cell specific genes generate a regulatory network and their deregulation is implicated in B-cell lymphomagenesis. Epstein-Barr virus (EBV) infects B-cells and influences the activity of signalling pathways including JAK/STAT and several genes encoding developmental regulators. Therefore, EBV-infection impacts the pathogenesis and the outcome of B-cell malignancies including Hodgkin lymphoma and diffuse large B-cell lymphoma (DLBCL). Here, we isolated EBV-positive and EBV-negative subclones from the DLBCL derived cell line DOHH-2. These subclones served as model to investigate the role of EBV in deregulation of the B-cell specific NKL-code members HHEX, HLX, MSX1 and NKX6-3. We showed that the EBV-encoded factors LMP1 and LMP2A activated the expression of HLX via STAT3. HLX in turn repressed NKX6-3, SPIB and IL4R which normally mediate plasma cell differentiation. In addition, HLX repressed pro-apoptotic factor BCL2L11/BIM supporting cell survival. Thus, EBV aberrantly activated HLX thereby disturbing both B-cell differentiation and apoptosis in DLBCL. The results of our study contribute to better understand the pathogenic role of EBV in B-cell malignancies.
The NKL-code for innate lymphoid cells reveals deregulated expression of NKL homeobox genes HHEX and HLX in anaplastic large cell lymphoma (ALCL).
Cell line, Treatment
View SamplesNKL homeobox genes encode developmental transcription factors regulating basic processes in cell differentiation. According to their physiological expression pattern in early hematopoiesis and B-cell development, particular members of this homeobox gene subclass constitute an NKL-code. These B-cell specific genes generate a regulatory network and their deregulation is implicated in B-cell lymphomagenesis. Epstein-Barr virus (EBV) infects B-cells and influences the activity of signalling pathways including JAK/STAT and several genes encoding developmental regulators. Therefore, EBV-infection impacts the pathogenesis and the outcome of B-cell malignancies including Hodgkin lymphoma and diffuse large B-cell lymphoma (DLBCL). Here, we isolated EBV-positive and EBV-negative subclones from the DLBCL derived cell line DOHH-2. These subclones served as model to investigate the role of EBV in deregulation of the B-cell specific NKL-code members HHEX, HLX, MSX1 and NKX6-3. We showed that the EBV-encoded factors LMP1 and LMP2A activated the expression of HLX via STAT3. HLX in turn repressed NKX6-3, SPIB and IL4R which normally mediate plasma cell differentiation. In addition, HLX repressed pro-apoptotic factor BCL2L11/BIM supporting cell survival. Thus, EBV aberrantly activated HLX thereby disturbing both B-cell differentiation and apoptosis in DLBCL. The results of our study contribute to better understand the pathogenic role of EBV in B-cell malignancies.
The NKL-code for innate lymphoid cells reveals deregulated expression of NKL homeobox genes HHEX and HLX in anaplastic large cell lymphoma (ALCL).
Cell line, Treatment
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Systems genetics identifies a co-regulated module of liver microRNAs associated with plasma LDL cholesterol in murine diet-induced dyslipidemia.
No sample metadata fields
View SamplesGenetic variation, in addition to environmental influences like diet, can govern the expression levels of microRNAs (miRNAs). MiRNAs are commonly found to operate cooperatively in groups to regulate gene expression. To investigate this, we combined small RNA sequencing, clinical phenotypes, and microarray data measuring gene expression from an outbred mouse model, the Diversity Outbred population. In the DO population, each individual has a distinct genome that is a mosaic of 8 inbred founder strains. We used these data to identify co-regulated modules of miRNAs and genes that are influenced by genetics and diet, and identify relationships between the modules and phenotypes in over 200 DO mice.
Systems genetics identifies a co-regulated module of liver microRNAs associated with plasma LDL cholesterol in murine diet-induced dyslipidemia.
No sample metadata fields
View SamplesIdentification of common mechanisms underlying organ development and primary tumor formation should yield new insights into tumor biology and facilitate the generation of relevant cancer models. We have developed a novel method to project the gene expression profiles of medulloblastomas (MBs)human cerebellar tumorsonto a mouse cerebellar development sequence: postnatal days 1-60 (P1-P60). Genomically, human medulloblastomas were closest to mouse P1-P10 cerebella, and normal human cerebella were closest to mouse P30-P60 cerebella. Furthermore, metastatic MBs were highly associated with mouse P5 cerebella, suggesting that a clinically distinct subset of tumors is identifiable by molecular similarity to a precise developmental stage. Genewise, down- and up-regulated MB genes segregate to late and early stages of development, respectively. Comparable results for human lung cancer vis-a-vis the developing mouse lung suggest the generalizability of this multiscalar developmental perspective on tumor biology. Our findings indicate both a recapitulation of tissue-specific developmental programs in diverse solid tumors and the utility of tumor characterization on the developmental time axis for identifying novel aspects of clinical and biological behavior.
Conserved mechanisms across development and tumorigenesis revealed by a mouse development perspective of human cancers.
No sample metadata fields
View Samples