A transcriptomic meta-analysis of over 400 microarrays was undertaken to compare LPC lines against datasets of; muscle and embryonic stem cell lines, embryonic and developed liver (DL), and HCC. Uploaded here, is the array data from seven of the ten LPC lines used. These seven were prepared in our laboratory. The remaining LPC arrays and arrays from other tissues/cells were obtained from the GEO.
A Transcriptomic Signature of Mouse Liver Progenitor Cells.
Sex, Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Autophagy maintains the metabolism and function of young and old stem cells.
Specimen part
View SamplesAutophagy is critical for protecting HSCs from metabolic stress. Here, we used a genetic approach to inactivate autophagy in adult HSCs by deleting the Atg12 gene. We show that loss of autophagy causes accumulation of mitochondria and an oxidative phosphorylation (OXPHOS)-activated metabolic state, which drives accelerated myeloid differentiation likely through epigenetic deregulations rather than transcriptional changes, and impairs HSC self-renewal activity and regenerative potential.
Autophagy maintains the metabolism and function of young and old stem cells.
Specimen part
View SamplesTo identify the molecular characterisitics of parallel lineage-biased MPP populations arising from hematopoietic stem cells (HSC) we conducted genome-wide analyses of hematopoietic stem, progenitor and mature myeloid cell populations using Affymetrix Gene ST1.0 arrays.
Functionally Distinct Subsets of Lineage-Biased Multipotent Progenitors Control Blood Production in Normal and Regenerative Conditions.
Specimen part
View SamplesMultipotent stromal cells (MSC) and their osteoblastic lineage cell (OBC) derivatives are part of the bone marrow (BM) niche and contribute to hematopoietic stem cell (HSC) maintenance. During myeloproliferative neoplasm (MPN) development, MSCs are stimulated to overproduce functtionally altered OBCs, which accumulate in the BM cavity as myelofibrotic cells. These MPN-expanded OBCs, in turn, impair the maintenance of normal HSCs but not of leukemic stem cells.
Myeloproliferative neoplasia remodels the endosteal bone marrow niche into a self-reinforcing leukemic niche.
Specimen part, Time
View SamplesIn this work, we determine total mRNA decay rates in rpb1-1 and rpb1-1/caf1? cells, calculate half-lives in rpb1-1/caf1? cells relative to rpb1-1 cells and correlate them with codon optimality. Overall design: mRNA profiling was done on 10 time points in rpb1-1/caf1 cells and sequenced using a paired end protocol on an Illumina HiSeq2000 instrument. A biological duplicate was performed.
mRNA Deadenylation Is Coupled to Translation Rates by the Differential Activities of Ccr4-Not Nucleases.
Cell line, Subject
View SamplesLoss of Rb family in HSCs results in a severe phenotype, such as enhanced proliferation and increase in stem cell number. In addition, HSCs were higly mobilized but failed to transplant. Rb family deficient mice rapidly exhibit a myeloproliferative disease with eosinophilic characteristics. Meanwhile, the lymphoid compartment was severely decreased, due to high apoptotic activity in this lineage.
Hematopoietic stem cell quiescence is maintained by compound contributions of the retinoblastoma gene family.
No sample metadata fields
View SamplesmRNA expression data were collected from patients with brain tumor to improve diagnostic of gliomas on molecular level.
Neuronal and glioma-derived stem cell factor induces angiogenesis within the brain.
No sample metadata fields
View SamplesTesticular and ovarian gene expression changes with loss of DMXL2
Dual role of DMXL2 in olfactory information transmission and the first wave of spermatogenesis.
Specimen part
View SamplesEpigenetic regulation serves as the basis for stem cell differentiation into distinct cell types, but it is unclear how global epigenetic changes are regulated during this process. Here, we tested the hypothesis that global chromatin organization affects the lineage potential of stem cells and that manipulation of chromatin dynamics influences stem cell function. Using nuclease sensitivity assays, we found a progressive decrease in chromatin digestion between pluripotent embryonic stem cells (ESCs), multipotent hematopoietic stem and progenitor cells (HSPCs), and mature hematopoietic cells. Quantification of chromatin composition by high-resolution microscopy revealed that ESCs contain significantly more euchromatin than HSPCs, with a further reduction in euchromatin as HSPCs transition into mature cells. Increased cellular maturation also led to heterochromatin localization to the nuclear periphery. Functionally, prevention of heterochromatin formation by inhibition of the histone methyltransferase G9a resulted in delayed hematopoietic stem cell (HSC) differentiation. Our results demonstrate significant global rearrangements of chromatin structure during embryonic and adult stem cell differentiation, and that heterochromatin formation by H3K9 methylation is an important regulator of HSC differentiation. Overall design: Examination of gene expression profile of in vitro cultured mouse HSC with the G9a inhibitor UNC0638
Progressive Chromatin Condensation and H3K9 Methylation Regulate the Differentiation of Embryonic and Hematopoietic Stem Cells.
Specimen part, Cell line, Treatment, Subject
View Samples