Poly(A) enriched RNA derived from the L5 DRG 7 days following L5-SNT and from naïve L5-DRG tissue was subjected to RNA-seq analysis at different sequencing depths Overall design: 6 biological replicates (3 case – SNT subjected L5-DRG tissue, 3 control – naïve L5-DRG tissue). Each biological replicate was divided B46into 3 technical replicates; each of the technical replicates for a given sample was sequenced to a depth of 17M, 25M or 50M reads. Reads were single stranded and 34bps in length. Multiplexing was used in order to generate the read depths of different sizes. The gene expression values and fold changes in expression between naive and SNT samples were compared to those generated by a microarray experiment carried out on further technical replicates of the same samples, details in the manuscript (submitted - under revision).
A comparison of RNA-seq and exon arrays for whole genome transcription profiling of the L5 spinal nerve transection model of neuropathic pain in the rat.
No sample metadata fields
View SamplesWe used RNA sequencing to study gene expression in lymph node derived DCs from anaphylactic mice sensitized intranasally with the major peach allergen Pru p 3, during the acute reaction phase, induced intraperitoneally. In total, 237 genes changed significantly, 181 showing at least two-fold changes. Almost three quarters of these increased during anaphylaxis Overall design: 5 Female Balb/c mice aged 4-5 weeks, were sensitized to peach using intranasally administered Pru p 3 in combination with LPS and challenged intraperitoneally as described previously . 5 Littermates, treated with intranasally administered PBS (instead of Pru p 3 and LPS), and later given an intraperitoneal challenge as per the anaphylactic mice, were used for comparison.
Transcriptional Profiling of Dendritic Cells in a Mouse Model of Food-Antigen-Induced Anaphylaxis Reveals the Upregulation of Multiple Immune-Related Pathways.
Sex, Cell line, Treatment, Subject
View SamplesBackground: Kawasaki Disease (KD) is a childhood illness of suspected infectious etiology that causes medium-sized muscular arteritis, most critically affecting the coronary arteries. No single diagnostic test exists, hampering early diagnosis and treatment. Approximately 25% of untreated patients develop coronary artery disease, and children who are treated with intravenous gammaglobulin but do not respond are also at high risk. Subacute/chronic arteritis and luminal myofibroblastic proliferation are the pathologic processes occurring in KD CA after the second week of illness, when neutrophilic necrotizing arteritis has subsided. The specific dysregulated immune pathways contributing to subacute/chronic arteritis have been unknown, hampering the development of effective immunomodulatory therapies for patients not responding to intravenous gammaglobulin therapy. Methods and Results: Deep RNA sequencing was performed on KD (n=8) and childhood control (n=7) coronary artery tissues, revealing 1074 differentially expressed mRNAs. Molecular pathways involving T helper cell, cytotoxic T lymphocyte, dendritic cells, and antigen presentation were the most significantly dysregulated. There was significant upregulation of immunoglobulin and type I interferon-stimulated genes. 80 upregulated extracellular genes encoding secreted proteins are candidate biomarkers of KD arteritis. Conclusions: The immune transcriptional profile in KD coronary artery tissues is primarily T helper and cytotoxic lymphocyte-mediated, and has features of an antiviral immune response such as type I interferon-stimulated gene expression. This first report of the KD coronary artery transcriptome identifies specific dysregulated immune response pathways that can inform the development of new therapies for and biomarkers of KD arteritis, and provide direction for future etiologic studies. Overall design: Primary analysis: 8 KD coronary arteries versus 7 childhood control coronary arteries. Subanalysis 1: 4 untreated KD coronary arteries versus 7 childhood control coronary arteries and subanalysis 2: 4 treated KD coronary arteries versus 7 childhood control coronary arteries
The transcriptional profile of coronary arteritis in Kawasaki disease.
No sample metadata fields
View SamplesBorrelia burgdorferi, the agent of Lyme disease, promotes pro-inflammatory changes in endothelium that lead to the recruitment of leukocytes. The host immune response to infection results in increased levels of IFN-gamma in the serum and lesions of Lyme disease patients that correlate with greater severity of disease. Therefore, the effect of IFN-gamma on the gene expression profile of primary human endothelial cells exposed to B. burgdorferi was determined. B. burgdorferi and IFN-gamma synergistically augmented the expression of 34 genes, seven of which encode chemokines. Six of these (CCL7, CCL8, CX3CL1, CXCL9, CXCL10, and CXCL11) attract T lymphocytes, and one (CXCL2) is specific for neutrophils. Synergistic production of the attractants for T cells was confirmed at the protein level. IL-1beta, TNF-alpha, and LPS also cooperated with IFN-gamma to induce synergistic production of CXCL10 by endothelium, indicating that IFN-gamma potentiates inflammation in concert with a variety of mediators. An in vitro model of the blood vessel wall revealed that an increased number of human T lymphocytes traversed endothelium exposed to B. burgdorferi and IFN-gamma, as compared to unstimulated endothelial monolayers. In contrast, addition of IFN-gamma diminished the migration of neutrophils across B. burgdorferi-activated endothelium. IFN-gamma thus alters gene expression by endothelium exposed to B. burgdorferi in a manner that promotes recruitment of T cells and suppresses that of neutrophils. This modulation may facilitate the development of chronic inflammatory lesions in Lyme disease.
IFN-gamma alters the response of Borrelia burgdorferi-activated endothelium to favor chronic inflammation.
No sample metadata fields
View SamplesAssessment of p53 targets by gene expression array analysis in irradiated and nonirradiated Wip1+/+ and Wip1-/- MEFs.
The Wip1 Phosphatase acts as a gatekeeper in the p53-Mdm2 autoregulatory loop.
Specimen part, Treatment
View SamplesA new method to measure elongation and intitiation rates Overall design: Reversal inhibition of transcription with DRB and tagging newly transcribed RNA with 4-thiouridine (4sU)
4sUDRB-seq: measuring genomewide transcriptional elongation rates and initiation frequencies within cells.
No sample metadata fields
View SamplesWe were interested to explain why p53 binds some high affinity sites in contrast to other high affinity sites that are not bound by p53.
p53 binds preferentially to genomic regions with high DNA-encoded nucleosome occupancy.
Cell line, Treatment
View Samplesp53 is a pivotal tumor suppressor and a major barrier against cancer. We now report that silencing of the Hippo pathway tumor suppressors LATS1 and LATS2 in non-transformed mammary epithelial cells reduces p53 phosphorylation and increases its association with the p52 NF-?B subunit. Moreover, it partly shifts p53’s conformation and transcriptional output towards a state resembling cancer-associated p53 mutants, and endow p53 with the ability to promote cell migration. Notably, LATS1 and LATS2 are frequently downregulated in breast cancer; we propose that such downregulation might benefit cancer by converting p53 from a tumor suppressor into a tumor facilitator. Overall design: MCF10A cells transfected with siRNA against LATS1/2 alone, p53 alone or LATS1/2 and p53 together. Two independent MCF10A batches provided biological replicates
Down-regulation of LATS kinases alters p53 to promote cell migration.
No sample metadata fields
View SamplesChromosomal instability in early cancer stages is caused by stress on DNA replication. The molecular basis for replication perturbation in this context is currently unknown. We studied the replication dynamics in cells in which a regulator of S-phase entry and cell proliferation, the Rb-E2F pathway, is aberrantly activated. Aberrant activation of this pathway by HPV-16 E6/E7 or cyclin E oncogenes, significantly decreased the cellular nucleotide levels in the newly transformed cells. Exogenously supplied nucleosides rescued the replication stress and DNA damage, and dramatically decreased oncogene-induced transformation. Increased transcription of nucleotide biosynthesis genes, mediated by expressing the transcription factor c-Myc, increased the nucleotide pool and also rescued the replication-induced DNA damage. Our results suggest a model for early oncogenesis in which uncoordinated activation of factors regulating cell proliferation leads to insufficient nucleotides that fail to support normal replication and genome stability.
Nucleotide deficiency promotes genomic instability in early stages of cancer development.
Sex, Specimen part
View SamplesAlternative mRNA splicing is a major mechanism for gene regulation and transcriptome diversity. Despite the extent of the phenomenon, the regulation and specificity of the splicing machinery are only partially understood. Adenosine-to-inosine (A-to-I) RNA editing of pre-mRNA by ADAR enzymes has been linked to splicing regulation in several cases. Here we used bioinformatics approaches, RNA-seq and exon-specific microarray of ADAR knockdown cells to globally examine how ADAR and its A-to-I RNA editing activity influence alternative mRNA splicing. Although A-to-I RNA editing only rarely targets canonical splicing acceptor, donor, and branch sites, it was found to affect splicing regulatory elements (SREs) within exons. Cassette exons were found to be significantly enriched with A-to-I RNA editing sites compared with constitutive exons. RNA-seq and exon-specific microarray revealed that ADAR knockdown in hepatocarcinoma and myelogenous leukemia cell lines leads to global changes in gene expression, with hundreds of genes changing their splicing patterns in both cell lines. This global change in splicing pattern cannot be explained by putative editing sites alone. Genes showing significant changes in their splicing pattern are frequently involved in RNA processing and splicing activity. Analysis of recently published RNA-seq data from glioblastoma cell lines showed similar results. Our global analysis reveals that ADAR plays a major role in splicing regulation. Although direct editing of the splicing motifs does occur, we suggest it is not likely to be the primary mechanism for ADAR-mediated regulation of alternative splicing. Rather, this regulation is achieved by modulating trans-acting factors involved in the splicing machinery. Overall design: HepG2 and K562 cell lines were stably transfected with plasmids containing siRNA designed to specifically knock down ADAR expression (ADAR KD). This in order to examine how ADAR affects alternative splicing globally.
Global regulation of alternative splicing by adenosine deaminase acting on RNA (ADAR).
Cell line, Subject
View Samples