Chromatin modifying activities for construction of appropriate epigenetic landscapes by polycomb repressive complex 2 (PRC2) play an essential role in development and tumorigenesis. However, the spatiotemporal mechanisms by which PRC2 achieves diverse epigenomes for specific tissue or cellular contexts remain poorly understood. Here, we discovered that LATS2 knockout causes dysregulation of PRC2 and subsequent transcriptome changes for differentiation in both mouse and human cells. LATS2 depletion dependent dysregulation of PRC2 also effects H3K4me3 and forms negative feedback loop for maintenance of PRC2. Further analyses reveal that LATS2 on chromatin binds to EZH2 and LATS2 has ability to phosphorylate PRC2 in vitro. These LATS2 dependent H3K27me3 targets are highly induced during neurogenesis, and statistical analysis of glioblastoma multiforme reveals that LATS2-high cases show more dedifferentiated transcriptome and poor prognosis with silencing of H3K27me3 targets. These observations suggest that LATS2-mediated epigenome coordination is pivotal for development and disease, including cancer. Overall design: mRNA of LATS2 KO HeLa-S3 cells rescued by empty vector, wild-type LATS2 or kinase-dead LATS2 were subjected to deep sequencing profiling using Illumina HiSeq 2500
LATS2 Positively Regulates Polycomb Repressive Complex 2.
No sample metadata fields
View SamplesWe found that CFIm68, a mRNA cleavage and polyadenylation factor implicated for alternative polyadenylation site choice, was co-purified with Thoc5, a component of human THO/TREX. Microarray analysis using human HeLa cells reveals knockdown of Thoc5 affects the expression of a subset of non-heat shock genes. Notably, depletion of Thoc5 attenuated the expression of the mRNAs polyadenylated at distal, but not proximal, polyadenylation sites, which phenocopied the depletion of CFIm68.
Human TREX component Thoc5 affects alternative polyadenylation site choice by recruiting mammalian cleavage factor I.
Cell line, Treatment
View SamplesThe goal of this study is to elucidate the influence of treadmill training on transcriptome of the upper lumbar spinal cord after thoracic spinal cord hemisection. mRNA profiles of spinal cords at 23 days-post injury with/without treadmill training were generated. The expression levels of 650 genes in the trained animal were increased ( > 2-fold) compared to untrained animals. Our study represents the detailed analysis of transcriptomes of spinal cord distal to the hemisected lesion after treadmill training, with biologic replicates, generated by RNA-seq technology. Overall design: The effect of training after spinal cord injury (T9) on the transcriptome of intact upper spinal cord was investigated.
Locomotor Training Increases Synaptic Structure With High NGL-2 Expression After Spinal Cord Hemisection.
Specimen part, Cell line, Subject
View SamplesIn order to investigate the function of heme in the regulation of gene expression, we herein examined variations in mRNA levels in ALA-treated cells from control conditions. A comprehensive anal- ysis by RNA sequencing showed marked changes in the expression of various genes. Among the different amounts of mRNA, we identified the novel heme-inducible protein, SRRD. The plant ho- mologue Sensitivity to Red Light Reduced (SRR1) was previously reported to be involved in the regulation of the circadian clock and phytochrome B signaling in Arabidopsis thaliana. We found that SRRD regulated not only heme biosynthesis, but also the expression of clock genes. The involvement of SRRD in the prolif- eration of cells was also demonstrated. Overall design: Examination of ALA-treated versus untreated NIH3T3 cells.
The novel heme-dependent inducible protein, SRRD regulates heme biosynthesis and circadian rhythms.
Cell line, Subject
View SamplesTo identify the transcripts fractionated into microsome fraction in ribosome-independent manner, we isolate rough microsome fraction by sucrose density gradient ultracengrifugation, then the rough microsome fraction is centrifugated following treatment with puromycine and EDTA in high-salt buffer to remove ribosomes. The pellet and surpernatant are named naked microsome fraction (NM) and stripped ribosome fraction (SR), respectively. By calculating the ratio of the level of each mRNA in NM and SR, we identify the enriched transcripts in NM. Overall design: Transcript profiles of subcellular fractions from S2-DRSC Drosophila cultured cell
Control of tissue size and development by a regulatory element in the <i>yorkie</i> 3'UTR.
Subject
View SamplesImmunocytochemical studies revealed that dG9a moves into nucleus after cycle 8 and appears to regulate gene expression by di-methylating H3K9 from cycle 8 to cycle 11. To determine which genes are regulated by dG9a during cycles 8-11, we examined mRNA levels by performing RNA-sequence analysis using early embryos (0-2 h after egg laying) of dG9a null mutant and wild type as a control Overall design: mRNA profiles of about 0-2h-old embryos of wild type (CantonS) and dG9a-depleted (dG9aRG5) strain
Genomewide identification of target genes of histone methyltransferase dG9a during Drosophila embryogenesis.
Subject
View SamplesRegulation of spatiotemporal gene expression in higher eukaryotic cells is critical for the precise and orderly development of undifferentiated progenitors into committed cell types of the adult. Recently, dynamic epigenomic regulation, including chromatin remodeling and histone modifications by transcriptional coregulator complexes, has been shown to be involved in transcriptional regulation. Precisely how these coregulator complexes exert their cell-type and developing stage-specific activity is largely unknown. In this study, we aimed to isolate the histone demethylase LSD1 complex from neural cells by biochemical purification. In so doing, we identified MyT1 as a novel LSD1 complex component. MyT1 is a neural cell-specific zinc finger factor and it forms a stable multiprotein complex with LSD1 through direct interaction. Target gene analysis using microarray and ChIP assays revealed several genes, including PTEN, that were directly regulated by the LSD1-MyT1 complex. Knockdown of either LSD1 or MyT1 derepressed the expression of endogenous target genes and inhibited cell proliferation of a neuroblastoma cell line, Neuro2a. We propose that formation of tissue-specific combinations of coregulator complexes is a critical mechanism for tissue-specific transcriptional regulation.
Identification of myelin transcription factor 1 (MyT1) as a subunit of the neural cell type-specific lysine-specific demethylase 1 (LSD1) complex.
Cell line, Treatment
View SamplesGene expression profiles of mouse spinal motor neurons are compared to those in cells in posterior horn region.
R-spondin 2 promotes acetylcholine receptor clustering at the neuromuscular junction via Lgr5.
Cell line
View SamplesGlioblastomas show heterogeneous histological features. These distinct phenotypic states are thought to be associated with the presence of glioma stem cells (GSCs), which are highly tumorigenic and self-renewing sub-population of tumor cells that have different functional characteristics. To investigate gene expression including lncRNA (long non-coding RNA) in GSC, we have performed high-throughput RNA-sequencing (RNA-seq) experiment using Illumina GAIIx. Overall design: Profiles of gene expression including lncRNA in GSC were generated by RNA-seq using Illumina GAIIx.
Targeting the Notch-regulated non-coding RNA TUG1 for glioma treatment.
No sample metadata fields
View SamplesTo find direct or indirect targets of Ad4BP/SF-1, RNA profiles of Y-1 cells were obtained with or without siRNA for Ad4BP/SF-1.
Glycolytic genes are targets of the nuclear receptor Ad4BP/SF-1.
No sample metadata fields
View Samples