Equine herpesvirus 1 (EHV-1) is a major pathogen affecting equines worldwide and causes respiratory disease, abortion, and in some cases, neurological disease.EHV-1strain KyA is attenuated in the mouse and equine, whereaswild-typestrain RacL11 induces severe inflammatory infiltration of the lung, causing infected mice to succumb at 4 to 6 days post-infection. Our previous results showed that EHV-1 KyA immunization protected CBA mice from pathogenic RacL11 challenge at 2 and 4 weeks post-immunization, and that the infection with theattenuatedKyA elicits protective humoral and cell-mediated immune responses.To investigate the protective mechanisms of EHV-1 KyA by innate immune responses, CBA mice immunized with live KyA were challenged with RacL11 at various timespost-vaccination. KyA immunization effectively protected CBA mice from RacL11 challenge at 1 to 7 dayspost-immunization. Immunized mice lost less than 10% of their preinfection body weight and rapidly regained body weight. Lung virus titers in EHV-1 KyA-immunized CBA mice were 1,000-fold lower at 2 days post-RacL11 challenge than lungs of non-immunized mice, which was indicative of accelerated virus clearance. Affymetrix microarray analysis revealed thatIFN-and16 antiviral interferon-stimulated genes (ISGs) were upregulated 3.1- to 48.2-fold at 8 h post-challengein the lungs of RacL11-challenged mice that had been immunized with KyA. Murine IFN-inhibitedEHV-1 infection of murine alveolar macrophage MH-S cells andeffectively protected mice against lethal EHV-1 challenge, suggesting that IFN-expression may be important in mediating protection elicited by KyA immunization. These results suggestthat EHV-1 KyA can be used asa live attenuated EHV-1 vaccine as well as a prophylactic agent in horses.
Immunization with Attenuated Equine Herpesvirus 1 Strain KyA Induces Innate Immune Responses That Protect Mice from Lethal Challenge.
Sex, Specimen part
View SamplesGlobal expression profiling of airway epithelial cells infected with Pseudomonas aeruginosa and the rsmA mutant.
Pseudomonas aeruginosa infection of airway epithelial cells modulates expression of Kruppel-like factors 2 and 6 via RsmA-mediated regulation of type III exoenzymes S and Y.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Lipid-induced epigenomic changes in human macrophages identify a coronary artery disease-associated variant that regulates PPAP2B Expression through Altered C/EBP-beta binding.
Sex, Specimen part, Treatment
View SamplesThe aim of the experiment was to determine the effects of 48 hours of treatment with oxidized low density lipoprotein (oxLDL) on gene expression in primary human monocyte-derived macrophages.
Lipid-induced epigenomic changes in human macrophages identify a coronary artery disease-associated variant that regulates PPAP2B Expression through Altered C/EBP-beta binding.
Specimen part
View SamplesSCA1, a fatal neurodegenerative disorder, is caused by a CAG expansion encoding a polyglutamine stretch in the protein ATXN1. We used RNA-seq to profile cerebellar RNA expression in ATXN1 mice, including lines with ataxia and progressive pathology and lines having ataxia in absence of Purkinje cell progressive pathology. Weighted Gene Coexpression Network Analysis of the cerebellar RNA-seq data revealed two gene networks that significantly correlated with disease, the Magenta (342 genes) and Light Yellow (35 genes) Modules. Features of the Magenta and Light Yellow Modules indicate they reflect distinctive pathways. The Magenta Module provides a description of suppressed transcriptional programs reflecting disease progression in Purkinje cells, while the Lt Yellow Module reflects other transcriptional programs activated in response to disease in Purkinje cells as well as other cerebellar cell types. We also found that up-regulation of cholecystokinin (Cck) blocked progression of Purkinje cell pathology and that loss of Cck function in mice lacking progressive disease enabled Purkinje cell pathology to progress to cell death. Overall design: Cerebellar mRNA expression profiles from ATXN1[82Q], ATXN1[30Q], and ATXN1[30Q]-D776 transgenic mice and wild type/FVB mice at 5 weeks, 12 weeks and 28 weeks of age ---------------------------- cuffnorm_ATXN1.82Q_ATXN1.30Q.D776_WTFVB_genes.fpkm_tracking.txt: CuffNorm normalized values for all samples (snoRNAs and miRNAs removed) cuffdiff_week5_ATXN1.82Q_ATXN1.30Q.D776_WTFVB_gene_exp.diff.txt: Cuffdiff comparison between samples at week 5; pairwise comparisons between ATXN1[82Q], ATXN1[30Q]D776 and FVB cuffdiff_week12_ATXN1.82Q_ATXN1.30Q.D776_WTFVB_gene_exp.diff.txt: Cuffdiff comparison between samples at week 12; pairwise comparisons between ATXN1[82Q], ATXN1[30Q]D776 and FVB cuffdiff_week28_ATXN1.82Q_ATXN1.30Q.D776_WTFVB_gene_exp.diff.txt: Cuffdiff comparison between samples at week 28; pairwise comparisons between ATXN1[82Q], ATXN1[30Q]D776 and FVB cuffdiff_week5_vs_week12_vs_week28_ATXN1.82Q_gene_exp.diff.txt: Cuffdiff comparison between ATXN1[82Q] at week 5, week 12 and week 28 cuffdiff_week5_vs_week12_vs_week28_ATXN1.30Q.D776_gene_exp.diff.txt: Cuffdiff comparison between ATXN1[30Q]D776 at week 5, week 12 and week 28 cuffdiff_week5_vs_week12_vs_week28_FVB_gene_exp.diff.txt: Cuffdiff comparison between wt/FVB at week 5, week 12 and week 28
Cerebellar Transcriptome Profiles of ATXN1 Transgenic Mice Reveal SCA1 Disease Progression and Protection Pathways.
Age, Specimen part, Cell line, Subject
View SamplesG protein coupled receptor (GPCR) signaling in osteoblasts (OBs) is an important regulator of bone formation. We previously described a mouse model expressing Rs1, an engineered constitutively active Gs-coupled GPCR, under the control of the 2.3 kb-Col I promoter. These mice showed a dramatic age-dependent increase in trabecular bone which were accompanied by an increase in OB lineage cells, especially immature OBs, indicated by an expansion of cells expressing Osterix and Runx2 in the whole femur. In this study, we further evaluated how Gs signaling in OBs affects intramembranous bone formation by examining calvariae of one-and nine-week-old Col1(2.3)/Rs1 mice. Rs1 calvariae displayed a dramatic increase in total volume and trabecular bone volume with partial loss of cortical structure. By immunohistochemistry, Osterix was detected in cells throughout the inter-trabecular space in Rs1 expressing mice while Osteocalcin was expressed predominantly in cells along bone surfaces. These findings resembled that previously seen in Rs1 femoral bones, suggesting the role of paracrine mediators secreted from OBs driven by 2.3 kb-Col I promoter could influence early OB commitment, differentiation, and/or proliferation. However, it is still unclear how G protein signaling in mature OBs leads to the observed alterations in bone mass. In this study, we investigated the cellular basis of the skeletal changes by assessing the effect of Rs1 expression in vivo on the transcriptome of mature OBs. We identified the complete set of Gs-GPCRs and other GPCRs that are expressed on OBs which may contribute to the observed skeletal phenotype. Candidate paracrine mediators of the effect of Gs signaling in OBs were determined. Genes affected by Rs1 signaling include those encoding proteins important for cell differentiation, cytokines and growth factors, angiogenesis, coagulation, and energy metabolism. Our results identify novel candidate mediators of the anabolic response to the skeleton to Gs signaling in mature OBs.
Assessing the osteoblast transcriptome in a model of enhanced bone formation due to constitutive Gs-G protein signaling in osteoblasts.
Specimen part
View SamplesAlveolar macrophages orchestrate pulmonary innate immunity and are essential for early immune surveillance and clearance of microorganisms in the airways. Inflammatory signaling must be sufficiently robust to promote host defense but limited enough to prevent excessive tissue injury. Macrophages in the lungs utilize multiple transcriptional and post-transcriptional mechanisms of inflammatory gene expression to delicately balance the elaboration of immune mediators. RNA terminal uridyltransferases (TUTs), including the closely homologous family members Zcchc6 (TUT7) and Zcchc11 (TUT4), have been implicated in the post-transcriptional regulation of inflammation from studies conducted in vitro. In vivo, we observed that Zcchc6 is expressed in mouse and human primary macrophages. Zcchc6-deficient mice are viable and born in Mendelian ratios and do not exhibit an observable spontaneous phenotype under basal conditions. Following an intratracheal challenge with S. pneumoniae, Zcchc6 deficiency led to a modest but significant increase in the expression of select cytokines including IL-6, CXCL1, and CXCL5. These findings were recapitulated in vitro whereby Zcchc6-deficient macrophages exhibited similar increases in cytokine expression due to bacterial stimulation. Although loss of Zcchc6 also led to increased neutrophil emigration to the airways during pneumonia, these responses were not sufficient to impact host defense against infection.
The RNA uridyltransferase Zcchc6 is expressed in macrophages and impacts innate immune responses.
No sample metadata fields
View SamplesMicroRNA regulates protein expression of cells by repressing translation of specific target messenger transcripts. Loss of the neuron specific microRNA miR-128 in Dopamine D1-receptor expressing neurons in the murine striatum (D1-MSNs) lead to increased neuronal excitability, locomotor hyperactivity and fatal epilepsy.
MicroRNA-128 governs neuronal excitability and motor behavior in mice.
No sample metadata fields
View SamplesFollowing myocardial infarction, the prognosis for females is better than males. Estrogen is thought to be protective, but clinical trials with hormone replacement failed to show protection. Here, we sought to identify novel mechanisms that might explain this sex-based difference. By diverging from the traditional focus on sex hormones, we employed a conceptually novel approach to this question by using a non-biased approach to measure global changes in gene expression following infarction.
An association between gene expression and better survival in female mice following myocardial infarction.
Sex, Specimen part
View SamplesThe objective of this study was to determine the gene expression changes mediated by the alpha6beta4 integrin using MDA-MB-435 breast carcinoma cell line under normal culturing conditions (10% FCS in DMEM).
Integrin alpha6beta4 controls the expression of genes associated with cell motility, invasion, and metastasis, including S100A4/metastasin.
No sample metadata fields
View Samples