Affymetrix microarrays were used to determine the mRNA composition of mRNPs obtained by immunoprecipitation with IRP1 (iron regulatory protein 1).
Identification of target mRNAs of regulatory RNA-binding proteins using mRNP immunopurification and microarrays.
Sex
View SamplesThis SuperSeries is composed of the SubSeries listed below.
High expression of miR-125b-2 and SNORD116 noncoding RNA clusters characterize ERG-related B cell precursor acute lymphoblastic leukemia.
Specimen part, Disease, Disease stage
View SamplesERG-related B cell precursor acute lymphoblastic leukemia (BCP ALL) is a recently described childhood ALL subtype characterized by aberrant ERG protein expression and highly recurrent ERG intragenic deletions. Several studies reported a remarkably favourable outcome for ERG-related BCP-ALL despite a high incidence of apparently inauspicious IKZF1 aberrations. In this study we investigated by integrative genomic analysis the main features of the ERG-related group in a cohort of B-others BCP ALL patients enrolled in the AIEOP ALL 2000 therapeutic protocol. We report a specific microRNA and snoRNA signature that characterizes ERG-related patients with up-regulation of the miR-125b-2 cluster on chromosome 21 and several snoRNAs in the Prader-Willi locus at 15q11.2, including the orphan SNORD116 cluster. Given the current lack of parameters for a comprehensive classification we suggest toexploit the noncoding RNAs signature for differential diagnosis of ERG-related patients.
High expression of miR-125b-2 and SNORD116 noncoding RNA clusters characterize ERG-related B cell precursor acute lymphoblastic leukemia.
Specimen part, Disease, Disease stage
View SamplesSeventeen T-ALL patients out of 120 (14.2%) presented CRLF2 expression 5 times higher than the median (CRLF2-high) with a significantly inferior 5-y EFS and an increased CIR compared to CRLF2-low patients.GEP of 15 T-ALL patients with (CRLF2-high) were compared to 15 CRLF2-low patients. GSEA identified cell cycle deregulating gene sets.
CRLF2 over-expression is a poor prognostic marker in children with high risk T-cell acute lymphoblastic leukemia.
Disease
View SamplesPurpose: To investigate alterations in subcutaneous white adipose gene expression induced by genetic AMPK activation in vivo, in mice fed a chow or a high-fat diet. Methods: Subcutaneous white adipose tissue mRNA profiles of wild-type transgenic (WT-Tg) mice and mice expressing a gain-of-function AMPK mutant gamma1 subunit (D316A-Tg) were generated by deep sequencing. Results: RNA sequencing revealed over 3000 differentially expressed genes between WT-Tg and D316A-Tg subcutaneous white adipose tissue (WATsc) from mice fed a high fat diet (HFD), of which many were classified as 'skeletal muscle-associated'. Interestingly, uncoupling protein 1 (UCP1), associated with 'beige' adipocyte formation in WATsc, was not differentially expressed. On a chow diet, many differentially expressed genes were also identified, with gene ontology analysis identifiying glycolysis, TCA cycle and brown fat differentiation as highly enriched; key features of brown adipocyte identity. HFD-associated skeletal-muscle associated gene expression was either not significantly altered, or significantly down-regulated on a chow diet, indicating a diet-induced gene signature in D316A-Tg WATsc. Conclusions: Our study revealed gene signatures indicative of brown adipocyte development on a chow diet, where no overt metabolic phenotype was observed in gain-of-function animals. When fed a HFD, WATsc from D316A-Tg mice displayed a muscle-like gene signature, expressing key components of creatine and calcium thermogenic cycles including Ckmt2 (creatine kinase, mitochondrial 2) Atp2a1 (SERCA1-sarco/endoplasmic reticulum ATPase 1) and ryr1 (ryanodine receptor 1). UCP1 expression was not altered between WT-Tg and D316A-Tg mice fed a HFD. Our findings suggest a novel role for AMPK in the regulation of white adipocyte identity and a potentially novel cell population that, when metabolically challenged, preferrentially utilise muscle-like thermogenic futile cycles independent of UCP1 to mediate whole organism energy expenditure. Overall design: Whole subcutaneous white adipose tissue mRNA profiles were generated from mice fed either chow or 45% high-fat diet.
AMPK activation protects against diet induced obesity through Ucp1-independent thermogenesis in subcutaneous white adipose tissue.
Age, Specimen part, Cell line, Subject
View SamplesLeft ventricular mass (LVM) and cardiac gene expression are complex traits regulated by factors both intrinsic and extrinsic to the heart. To dissect the major determinants of LVM, we combined expression quantitative trait locus1 and quantitative trait transcript (QTT) analyses of the cardiac transcriptome in the rat. Using these methods and in vitro functional assays, we identified osteoglycin (Ogn) as a major candidate regulator of rat LVM, with increased Ogn protein expression associated with elevated LVM. We also applied genome-wide QTT analysis to the human heart and observed that, out of 22,000 transcripts, OGN transcript abundance had the highest correlation with LVM. We further confirmed a role for Ogn in the in vivo regulation of LVM in Ogn knockout mice. Taken together, these data implicate Ogn as a key regulator of LVM in rats, mice and humans, and suggest that Ogn modifies the hypertrophic response to extrinsic factors such as hypertension and aortic stenosis.
Integrated genomic approaches implicate osteoglycin (Ogn) in the regulation of left ventricular mass.
Sex, Age, Specimen part
View SamplesCelastrol has been shown to sensitize leptin receptor signaling and reduce ER stress. Current microarray data provide the gene expression profile in mouse embryonic fibroblasts (MEFs) after Celastrol treatment compared with control.
Withaferin A is a leptin sensitizer with strong antidiabetic properties in mice.
Specimen part, Treatment
View SamplesStudy of HP1 Knock Down on gene expression and splicing regulation in Human HeLa cells
Histone H3 lysine 9 trimethylation and HP1γ favor inclusion of alternative exons.
Cell line
View SamplesTranscriptome analysis of depletion of DYRK1A in HeLa cells
DYRK1A phoshorylates histone H3 to differentially regulate the binding of HP1 isoforms and antagonize HP1-mediated transcriptional repression.
Specimen part, Cell line
View SamplesThe present research is devoted to the identification of gene(s) severely affected by EMD mutations, leading to striated muscle laminopathies and more specifically the cardiomyopathy. For this purpose, we developped a large-scale gene expression approach on heart and skeletal tissues from Emd KO mouse model.
Activation of MAPK in hearts of EMD null mice: similarities between mouse models of X-linked and autosomal dominant Emery Dreifuss muscular dystrophy.
No sample metadata fields
View Samples