In order to establish a list of candidate direct COUP-TFI gene targets in the inner ear, we analyzed the differential gene expression profiles of the wild-type and the COUP-TFI/ P0 inner ears.
Genome-wide analysis of binding sites and direct target genes of the orphan nuclear receptor NR2F1/COUP-TFI.
Specimen part
View SamplesParthenogenetic stem cells were derived from parthenotes, then differentiated to mesenchymal stem cells. These were further reprogrammed to induced pluripotent stem cells, which were finally differentiated to secondary mesenchymal stem cells.
Accumulation of instability in serial differentiation and reprogramming of parthenogenetic human cells.
Sex, Specimen part
View SamplesSince the initial discovery that OCT4, SOX2, KLF4 and c-MYC overexpression sufficed for the induction of pluripotency in somatic cells, methodologies replacing the original factors have enhanced our understanding of the reprogramming process. However, unlike in mouse, OCT4 has not been replaced successfully during reprogramming of human cells. Here we report on a strategy to do so. Through a combination of transcriptome and bioinformatic analysis we have identified factors previously characterized as being lineage specifiers that are able to replace OCT4 and SOX2 in the reprogramming of human fibroblasts. Our results show that is possible to replace OCT4 and SOX2 simultaneously with alternative lineage specifiers in the reprogramming of human cells. At a broader level, they also support a model in which counteracting lineage specification networks underlie the induction of pluripotency,
Reprogramming of human fibroblasts to pluripotency with lineage specifiers.
Specimen part
View SamplesNumerous studies have shown that resistance to oxidative stress is crucial to stay healthy and to reduce the adverse effects of aging. Accordingly, nutritional interventions using antioxidant food-grade compounds or food products are currently an interesting option to help improve health and quality of life in the elderly. Live lactic acid bacteria (LAB) administered in food, such as probiotics, may be good antioxidant candidates. Nevertheless, information about LAB-induced oxidative stress protection is scarce. To identify and characterize new potential antioxidant probiotic strains, we have developed a new functional screening method using the nematode Caenorhabditis elegans as host. C. elegans were fed on different LAB strains (78 in total) and nematode viability was assessed after oxidative stress (3mM and 5mM H2O2). One strain, identified as Lactobacillus rhamnosus CNCM I-3690, protected worms by increasing their viability by 30% and, also, increased average worm lifespan by 20%. We performed a transcriptomic analysis of C. elegans fed with this strain and showed that increased lifespan is correlated with differential expression of the DAF-16/insulin-like pathway, which is highly conserved in humans.
Anti-inflammatory Lactobacillus rhamnosus CNCM I-3690 strain protects against oxidative stress and increases lifespan in Caenorhabditis elegans.
Time
View SamplesInduced pluripotent stem (iPS) cells have generated interest for regenerative medicine as they allow for producing patient-specific progenitors in vitro with potential value for cell therapy. In many instances, however, an off-the-shelf approach would be desirable, such as for cell therapy of acute conditions or when the patient's somatic cells are altered as a consequence of chronic disease or aging. Cord blood (CB) stem cells appear ideally suited for this purpose as they are newborn, immunologically immature cells with minimal genetic and epigenetic alterations, and several hundred thousand immunotyped CB units are readily available through a worldwide network of CB banks. Here, we show that CB stem cells can be reprogrammed to pluripotency by retroviral transduction with OCT4, SOX2, KLF4, and c-MYC, in a process that is extremely efficient and fast. The resulting CB-derived iPS (CBiPS) cells are phenotypically and molecularly indistinguishable from human embryonic stem (hES) cells. Furthermore, we show that generation of CBiPS can be efficiently achieved without the use of the c-MYC and KLF4 oncogenes and just by overexpression of OCT4 and SOX2. Our studies set the basis for the creation of a comprehensive bank of HLA-matched CBiPS cells for off-the-shelf applications.
Generation of induced pluripotent stem cells from human cord blood using OCT4 and SOX2.
Specimen part
View SamplesMale patients (n=6, mean age 62 years) with NYHA III-IV and an left ventricular ejection fraction of <35% despite pharmacological therapy received 35 hours of enhanced external counterpulsation (EECP) over a period of 7 weeks.
Effects of enhanced external counterpulsation on skeletal muscle gene expression in patients with severe heart failure.
Sex, Specimen part, Treatment, Subject
View SamplesSeveral studies demonstrated IgVH mutation status and ZAP-70 expression as the most relevant prognostic markers in CLL, suggesting the separation of two patient subgroups: with good (MTZAP-70-) and poor prognosis (UMZAP-70+). We determined gene expression of B cells in 112 CLL patients divided into three classes: the first with IgVHMT and ZAP-70-, the second with IgVHUM and ZAP-70+, and the third included both IgVHUM ZAP-70- and IgVHMT ZAP-70+. We found LPL, AGPAT2, MBOAT1, CHPT1, AGPAT4, PLD1 genes encoding enzymes involved in lipid (glycerolipid/glycerophospholipid) metabolism overexpressed in UMZAP-70+. In addition, this study demonstrates the role of ARSD, a gene belonging to the sphingolipid metabolism, as a new gene significantly overexpressed in UMZAP-70+ in respect to MTZAP-70-. ARSD protein was found at significantly higher concentrations in UMZAP-70+ compared to MTZAP-70- CLL B cells and B cells from healthy individuals by Western blotting. Statistical analysis identified a strong correlation between ARSD and IgVH mutation status; ARSD protein level was associated with the requirement of therapy for CLL patients and for this purpose it is as good as IgVH mutational status. Our study highlights ARSD as a promising new prognostic factor in CLL and sphingolipid metabolism as a putative new biological mechanism in CLL.
Gene expression profiling identifies ARSD as a new marker of disease progression and the sphingolipid metabolism as a potential novel metabolism in chronic lymphocytic leukemia.
Sex, Age, Disease, Disease stage
View SamplesTCERG1 is a highly conserved human protein implicated in interactions with the transcriptional and splicing machinery. To investigate TCERG1 function, we survey genome-wide changes in transcript and exon levels upon TCERG1 knockdown in HEK293T cells. Our data revealed that TCERG1 regulates different types of alternative spliced events, indicating a broad role in the regulation of alternative splicing.
Transcriptional Elongation Regulator 1 Affects Transcription and Splicing of Genes Associated with Cellular Morphology and Cytoskeleton Dynamics and Is Required for Neurite Outgrowth in Neuroblastoma Cells and Primary Neuronal Cultures.
Cell line
View SamplesOur findings demonstrate that CDCP1 is a novel modulator of HER2 signalling, and a biomarker for the stratification of breast cancer patients with poor prognosis
Interaction of CDCP1 with HER2 enhances HER2-driven tumorigenesis and promotes trastuzumab resistance in breast cancer.
Cell line
View SamplesHeart failure is a leading cause of mortality and morbidity in the developed world, partly because mammals lack the ability to regenerate heart tissue. Whether this is due to evolutionary loss of regenerative mechanisms present in other organisms or to an inability to activate such mechanisms is currently unclear. Here, we decipher mechanisms underlying heart regeneration in adult zebrafish and show that the molecular regulators of this response are conserved in mammals. We identified miR-99/100 and Let-7a/c, and their protein targets smarca5 and fntb, as critical regulators of cardiomyocyte dedifferentiation and heart regeneration in zebrafish. Although human and murine adult cardiomyocytes fail to elicit an endogenous regenerative response following myocardial infarction, we show that in vivo manipulation of this molecular machinery in mice results in cardiomyocyte dedifferentiation and improved heart functionality after injury. These data provide a proof-of-concept for identifying and activating conserved molecular programs to regenerate the damaged heart. Overall design: RNA-Seq expression profiles of rat cardiomyocytes after knockdown of miR-99/100 and Let-7 miRNAs
In vivo activation of a conserved microRNA program induces mammalian heart regeneration.
No sample metadata fields
View Samples