Prior studies using DNA microarray platforms have shown alterations of gene expression profiles (GEPs) of marrow cells in myelodysplastic syndromes (MDS). Using the increased sensitivity and accuracy of high-throughput RNA sequencing (RNA-Seq) for detecting and quantifying mRNA transcripts, our study has demonstrated novel significant differences in GEPs between MDS and normal CD34+ marrow cells with 41 genes identified as disease classifiers. Additionally, two main clusters of GEPs distinguished patients based on their major clinical features, particularly between those whose disease remained stable (sMDS) vs patients whose illness transformed to acute myeloid leukemia within 12 months (tMDS). The genes whose expression was associated with disease outcome were involved in functional pathways and biologic processes highly relevant for MDS. Exomic analysis identified MDS-associated pathogenic mutations in virtually all patients tested. MDS subgroups with spliceosome mutations demonstrated distinct differential isoform usage and expression and consequent dysregulation of distinct biological functions. This combination of clinical, transcriptomic and exomic findings provides valuable molecular insights into the mechanisms underlying MDS and its progression to a more aggressive stage and also facilitates prognostic characterization of MDS patients. Overall design: RNA-Seq was performed on CD34+ hematopoietic stem cells derived from healthy individuals and patients with myelodysplastic syndrome.
Distinct transcriptomic and exomic abnormalities within myelodysplastic syndrome marrow cells.
Specimen part, Disease, Subject
View SamplesHypoxia may cause pulmonary and brain edema, pulmonary hypertension, aberrant metabolism and early mortality. To better understand pathological processes associated with hypoxia, we examined gene expression in Chuvash polycythemia (CP) blood mononuclear cells. CP is a congenital disorder of up-regulated hypoxic response at normoxia wherein VHLR200W homozygosity leads to elevated hypoxia inducible factor (HIF)-1 and HIF-2 levels, thromboses, pulmonary hypertension, lower systemic blood pressure (SBP) and increased mortality. VHLR200W homozygotes are often treated by phlebotomy resulting in iron deficiency, allowing us to evaluate an interaction of augmented hypoxia sensing with iron deficiency.
Iron deficiency modifies gene expression variation induced by augmented hypoxia sensing.
Sex, Specimen part
View SamplesThe aim of this study was to analyze potential brown planthopper (BPH) resistant genes in Rathu Heenati (RHT) by Affymetrix whole rice genome array,BPH susceptible and resistant rice varieties of TN1Taichung Native 1as control. All the resistant related genes derived from RHT will be analyzed according to the SSR markers interval flanked on the chromosome 3, 4, 6 and 10. It will be benefit to the gene clone and marker assistant breeding for Bph3 gene in the near future.
Microarray analysis of broad-spectrum resistance derived from an indica cultivar Rathu Heenati.
Specimen part, Time
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Profiles of epigenetic histone post-translational modifications at type 1 diabetes susceptible genes.
Specimen part, Disease, Cell line
View SamplesThe aim of this study is to identify genes implicated in the early steps of the autoimmune process, prior to inflammation in type 1 diabetes. Early Insulin AutoAntibodies (E-IAA) have been used as subphenotypic marker to select individual animals as type 1 diabetes prone and to compare gene expression patterns with insulin autoantibody negative NOD.
Early over expression of messenger RNA for multiple genes, including insulin, in the Pancreatic Lymph Nodes of NOD mice is associated with Islet Autoimmunity.
Age
View SamplesBoth genetic and environmental factors are implicated in Type 1 Diabetes (T1D). Since environmental factors can trigger epigenetic changes, we hypothesized that variations in histone posttranslational modifications (PTMs) at the promoter/enhancer regions of T1D susceptible genes may be associated with T1D. We therefore evaluated histone PTM variations at known T1D susceptible genes in blood cells from T1D patients versus healthy non-diabetic controls, and explored their connections to T1D. We used the chromatin-immunoprecipitation-linked-to-microarray approach to profile key histone PTMs, including H3-lysine-4 trimethylation (H3K4me3), H3K27me3, H3K9me3, H3K9 acetylation (H3K9Ac) and H4K16Ac at genes within the T1D susceptible loci in lymphocytes, and H3K4me3, H3K9me2, H3K9Ac and H4K16Ac at the IDDM1 region in monocytes of T1D patients and healthy controls separately. We screened for potential variations in histone PTMs using computational methods to compare datasets from T1D and controls. Interestingly, we observed marked variations in H3K9Ac levels at the upstream regions of HLA-DRB1 and HLA-DQB1 within the IDDM1 locus in T1D monocytes relative to controls. Additional experiments with THP-1 monocytes demonstrated increased expression of HLA-DRB1 and HLA-DQB1 in response to interferon- and TNF-treatment that were accompanied by changes in H3K9Ac at the same promoter regions as that seen in the patient monocytes. These results suggest that the H3K9Ac status of HLA-DRB1 and HLA-DQB1, two genes highly associated with T1D, may be relevant to their regulation and transcriptional response towards external stimuli. Thus, the promoter/enhancer architecture and chromatin status of key susceptible loci could be important determinants in their functional association to T1D susceptibility.
Profiles of epigenetic histone post-translational modifications at type 1 diabetes susceptible genes.
Specimen part, Disease
View SamplesERa is essential for the anti-proliferative response of breast cancer cells not only to estrogen antagonists, but also to estrogen withdrawal by means of aromatase inhibitors. We explored here one of the simplest explanation for this, consisting in the possibility that ERa may have a wide genomic function in absence of ligands. The genomic binding of ERa in the complete absence of estrogen was then studied using hormone-dependent MCF7 cells, by chromatin immunoprecipitation sequencing. From these data, 4.2K highly significant binding events were identified, which were further confirmed by comparing binding events in cells expressing ERa to cells silenced for ERa. Apo-ERa binding sites were distributed close to genes with functions associated to cell growth and epithelial maintenance and show significant overlap with binding of other transcription factors important for luminal epithelial breast cancer. Interestingly, we found that upon ERa silencing cognate gene transcription in absence of estrogen is downregulated and this is accompanied by increased H27Kme3 at ERa binding sites. RNA-Seq experiments showed that unliganded ERa controls basal transcription widely, including both coding and noncoding transcripts. Genes affected by ERa silencing can be easily functionally related to mammary epithelium differentiation and maintenance, especially when considering downregulated genes. Additional functions related to inflammatory and immune response was observed. Our data unravel unexpected actions of ERa in breast cancer cells and provide a novel framework to understand success and failure of hormone therapy in breast cancer. Overall design: Examination of unligandend estrogen receptor alpha (aERa) DNA interactions in control and aERa siRNA treated MCF7 cells.
Dissecting the genomic activity of a transcriptional regulator by the integrative analysis of omics data.
No sample metadata fields
View SamplesWe report high throughput transcriptomic profiling with RNA-Sequencing (RNA-Seq) to uncover network responses in human THP-1 monocytes treated with high glucose (HG). Overall design: Examination of differential expression between normal and high glucose condition in THP1 cells.
RNA-sequencing analysis of high glucose-treated monocytes reveals novel transcriptome signatures and associated epigenetic profiles.
Specimen part, Subject
View SamplesUrothelial cell carcinoma of the bladder (UCC) is a common disease characterized by FGFR3 mutation. Whilst upregulation of this oncogene occurs most frequently in low-grade non-invasive tumors, recent data reveal increased FGFR3 expression characterizes a common sub-type of invasive UCC sharing genetic similarities with lobular breast cancer. These similarities include upregulation of the FOXA1 transcription factor and reduced expression of microRNAs-99a/100. We have previously identified direct regulation of FGFR3 by these two microRNAs and now search for further targets. Using a microarray meta-database we find potential FOXA1 regulation by microRNAs-99a/100. We confirm direct targeting of the FOXA1 3UTR by microRNAs-99a/100 and also potential indirect regulation through microRNA-485-5p/SOX5/JUN-D/FOXL1 and microRNA-486/FOXO1a. In 292 benign and malignant urothelial samples, we find an inverse correlation between the expression of FOXA1 and microRNAs-99a/100 (r=-0.33 to -0.43, p<0.05). As for FGFR3 in UCC, tumors with high FOXA1 expression have lower rates of progression than those with low expression (Log rank p=0.009). Using global gene expression and CpG methylation profiling we find genotypic consequences of FOXA1 upregulation in UCC. These are associated with regional hypomethylation and near FOXA1 binding sites, and mirror patterns previously reported in FGFR3 mutant UCC. These include gene silencing through aberrant hypermethylation (e.g. IGFBP3) and affect genes that characterize lobular breast cancer (e.g. ERBB2, XBP1). In conclusion, we have identified microRNAs-99a/100 mediate a direct relationship between FGFR3 and FOXA1, and potentially facilitate cross talk between these pathways in UCC.
MicroRNA-99a and 100 mediated upregulation of FOXA1 in bladder cancer.
Cell line
View SamplesTo gain global insights into the transcriptomic response associated with MIR148A family knockout, we performed RNA sequencing (RNA-Seq) on hESC-differentiated cells on day 4 of cardiac differentiation for both WT and MIR148A-TKO groups. RNA-Seq analysis identified a total of 1837 differentially expressed genes in MIR148A-TKO and wild-type hESC-derived cells on day 4 of cardiac differentiaton. Furthermore, Gene Ontology enrichment analysis indicated knockout of all MIR148A family members inhibited lateral mesodermal and cardiac differentiation. Overall design: RNA-seq analysis of cells derived from both the MIR148A-TKO and wild-type hESCs on day 4 of cardiac differentiation.
MIR148A family regulates cardiomyocyte differentiation of human embryonic stem cells by inhibiting the DLL1-mediated NOTCH signaling pathway.
Specimen part, Subject
View Samples