Low concentrations of the dissolved leonardite humic acid HuminFeed (HF) prolonged the lifespan and enhanced the thermal stress resistance of the model organism Caenorhabditis elegans. Furthermore growth was impaired and reproduction delayed, effects which have also been identified in other polyphenolic monomers, including tannic acid, rosmarinic acid, and caffeic acid. Moreover, a chemical modification of HF (HF-HQ), which increases its phenolic/quinonoid moieties, magnified the biological impact on C. elegans. To gain a deep insight into the molecular basis of these effects, we performed global transcriptomics on young adult (3 d) and old adult (11 d) nematodes exposed to two concentrations of HF and young adults (3 d) exposed to two concentrations of HF-HQ.
The Nematode Caenorhabditis elegans, Stress and Aging: Identifying the Complex Interplay of Genetic Pathways Following the Treatment with Humic Substances.
Specimen part, Treatment
View SamplesRecent research has highlighted that the polyphenols Quercetin (Q) and Tannic acid (TA) are capable of extending the lifespan of C. elegans. To gain a deep understanding of the underlying molecular genetics, we analyzed the global transcriptional patterns of nematodes exposed to Quercetin or Tannic acid concentrations that are non-effective (in lifespan extension), lifespan extending or toxic.
Meta-Analysis of Global Transcriptomics Suggests that Conserved Genetic Pathways are Responsible for Quercetin and Tannic Acid Mediated Longevity in C. elegans.
Specimen part, Treatment
View SamplesExpression in GFP vs. GFP/hTERT transduced CD8 T Lymphocytes from Healty Donors (HD) 1 and 2 at early and late passages. Using CD8+ T lymphocyte clones over-expressing telomerase we investigated the molecular mechanisms that regulate T cell proliferation. Transduction and subcloning procedures were performed on CD8 + naive T-cell clones isolated from two different healthy individuals aged between 30 to 35 years (HD1 and HD2). T-cell cloneswere transduced to express hTERT/GFP or GFP alone.
Mechanisms regulating the proliferative potential of human CD8+ T lymphocytes overexpressing telomerase.
No sample metadata fields
View SamplesUsing CD8+ T lymphocyte clones over-expressing telomerase weinvestigated the molecular mechanisms that regulate T cell proliferation. Transduction and subcloning procedures were performed on CD8 + naive T-cell clones isolated from two different healthy individuals aged between 30 to 35 years (HD1 and HD2). T-cell cloneswere transduced to express hTERT/GFP or GFP alone. HD2 was profiled on U133Plus 2.0 and submitted as a separate GEO series.
Mechanisms regulating the proliferative potential of human CD8+ T lymphocytes overexpressing telomerase.
No sample metadata fields
View SamplesUsing CD8+ T lymphocyte clones over-expressing telomerase weinvestigated the molecular mechanisms that regulate T cell proliferation. Transduction and subcloning procedures were performed on CD8 + naive T-cell clones isolated from two different healthy individuals aged between 30 to 35 years (HD1 and HD2). T-cell cloneswere transduced to express hTERT/GFP or GFP alone. HD1 was profiled on U133A and submitted as a separate GEO series.
Mechanisms regulating the proliferative potential of human CD8+ T lymphocytes overexpressing telomerase.
No sample metadata fields
View SamplesMicroarrays revolutionized biological research by enabling gene expression comparisons on a transcriptome-wide scale. Microarrays, however, do not estimate absolute expression level accurately. At present, high throughput sequencing is emerging as an alternative methodology for transcriptome studies. Although free of many limitations imposed by microarray design, its potential to estimate absolute transcript levels is unknown.
Estimating accuracy of RNA-Seq and microarrays with proteomics.
Sex, Age
View SamplesComparing gene expression level by Illumina sequencing of fibroblasts after irradiation Jena Centre for Systems Biology of Ageing - JenAge (www.jenage.de) Overall design: 6 samples, 3 samples per group, 2 groups: 1) MRC-5 cells population doublings (PD) 16 and irradiation (20GY) and 2) HFF cells PD32 and irradiation (20GY)
Conserved genes and pathways in primary human fibroblast strains undergoing replicative and radiation induced senescence.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
MicroRNA, mRNA, and protein expression link development and aging in human and macaque brain.
Sex, Age, Specimen part
View SamplesGene expression changes determine functional differentiation during development and are associated with functional decline during aging. While developmental changes are tightly regulated, regulation of aging changes is not well established. To assess the regulatory basis of age-related changes and investigate the mechanism of regulatory transition between development and aging, we measured mRNA and microRNA expression patterns in brains (superior frontal gyrus) of humans and rhesus macaques over the entire species lifespan. We find that in both species, developmental and aging changes overlap in the course of lifetime with many changes found at the late age initiating in early childhood.
MicroRNA, mRNA, and protein expression link development and aging in human and macaque brain.
Sex, Age, Specimen part
View SamplesZebrafish of two different age groups (12 and 36 months) were treated with low amounts of rotenone (mild stress) and compared to untreated zebrafish. Two different durations were used (3 and 8 weeks). Illumina sequencing (HiSeq2000) was applied to generate 50bp single-end reads. Jena Centre for Systems Biology of Ageing - JenAge (www.jenage.de) Overall design: 68 sample: 3 tissues (brain, liver, skin); 2 age groups (12 and 36 months); controls and rotenone treated samples; 2-6 biological replicates for each group
Longitudinal RNA-Seq Analysis of Vertebrate Aging Identifies Mitochondrial Complex I as a Small-Molecule-Sensitive Modifier of Lifespan.
No sample metadata fields
View Samples