Natural grape-juice fermentations involve the sequential development of different yeast species which strongly influence the chemical and sensorial traits of the final product. In the present study,we aimed to examine the transcriptomic response of Saccharomyces cerevisiae to the presence of Hanseniaspora guilliermondii wine fermentation.
Genomic expression program of Saccharomyces cerevisiae along a mixed-culture wine fermentation with Hanseniaspora guilliermondii.
Treatment, Time
View SamplesWe used microarrays to detail the program of gene expression underlying the growth of the plantaris muscle following synergist ablation-induced supraphysiological overload
Changes in muscle fiber contractility and extracellular matrix production during skeletal muscle hypertrophy.
Specimen part
View SamplesWe report RNA sequencing data from tenocytes treated with IGF1. Tenocytes were obtained from the tail tendons of adult C57Bl/6 mice via collagenase digestion. Tenocytes were grown to 60% confluence, and then treated with 100ng/mL of recombinant IGF1 for a period of 0, 1, 2, 6, or 24 hours. Experiments were conducted in quadruplicate. RNA was isolated and prepared for RNA sequencing. Overall design: Differential expression of mRNAs were evaluated from tenocytes isolated from tail tendons of adult wild type C57Bl/6 mice that were treated with recombinant IGF1 for 0, 1, 2, 6, and 24 hours.
Insulin-like growth factor 1 signaling in tenocytes is required for adult tendon growth.
Specimen part, Cell line, Subject
View SamplesTendon is a hypocellular tissue that contains functional cable-like units of type I collagen responsible for the transmission of force from muscle to bone. In the setting of injury or disease, patients can develop chronic tendinopathies that are characterized by pain, loss of function and persistent inflammatory changes that are often difficult to treat. Platelet-rich plasma (PRP) has shown promise in the treatment of chronic tendinopathy, but little is known about the mechanisms by which PRP can improve tendon healing. PRP contains many different growth factors and cytokines, and since these proteins can both activate and inhibit various signaling pathways it has been challenging to determine precisely which signaling pathways and cellular responses are most important. Using state-of-the-art bioinformatics tools and genome wide-expression profiling, the purpose of this study was to determine the signaling pathways activated within cultured tendon fibroblasts in response to PRP treatment.
Platelet-Rich Plasma Activates Proinflammatory Signaling Pathways and Induces Oxidative Stress in Tendon Fibroblasts.
Specimen part
View SamplesMyosteatosis is the pathological accumulation of lipid that occurs in conjunction with atrophy and fibrosis following skeletal muscle injury or disease. Little is known about the mechanisms by which lipid accumulates in myosteatosis, but many studies have demonstrated the degree of lipid infiltration negatively correlates with muscle function and regeneration. Our goal was to identify biochemical pathways that lead to muscle dysfunction and lipid accumulation in injured rotator cuff muscles, a model that demonstrates severe myosteatosis. Adult rats were subjected to a massive tear to the rotator cuff musculature. After a period of either 0 (healthy control), 10, 30, or 60 days, muscles were prepared for RNA sequencing, shotgun lipidomics, metabolomics, biochemical measures, electron microscopy, and muscle fiber contractility. Following rotator cuff injury, there was a decrease in muscle fiber specific force production that was lowest at 30d. There was a dramatic time dependent increase in triacylglyceride content. Interestingly, genes related to not only triacylglyceride synthesis, but also lipid oxidation were largely downregulated over time. Using bioinformatics techniques, we identified that biochemical pathways related to mitochondrial dysfunction and reactive oxygen species were considerably increased in muscles with myosteatosis. Long chain acyl-carnitines and L-carnitine, precursors to beta-oxidation, were depleted following rotator cuff tear. Electron micrographs showed injured muscles displayed large lipid droplets within mitochondria at early time points, and an accumulation of peripheral segment mitochondria at all time points. Several markers of oxidative stress were elevated following rotator cuff tear. The results from this study suggest that the accumulation of lipid in myosteatosis is not a result of canonical lipid synthesis, but occurs due to decreased lipid oxidation in mitochondria. A failure in lipid utilization by mitochondria would ultimately cause an accumulation of lipid even in the absence of increased synthesis. Further study will identify whether this process is required for the onset of myosteatosis. Overall design: Rats were subjected to a bilateral full-thickness supraspinatus tear and suprascapular neurectomy. Samples (N=4 per group) were taken at 0 days (unoperated controls), 10 days, 30 days, and 60 days post-injury
Reduced mitochondrial lipid oxidation leads to fat accumulation in myosteatosis.
No sample metadata fields
View SamplesPlatelet-derived growth factor receptor (PDGFR) signaling plays an important role in the embryonic formation of many different tissues. There is a family of PDGF isoforms which signal through the PDGF receptors (PDGFR) and (PDGFR). PDGF regulates many key cellular processes of mesenchymal cell function including proliferation, differentiation, migration and extracellular matrix (ECM) synthesis. While PDGF has been used to enhance flexor tendon healingin vivo, its role in postnatal tendon growth has remained largely unexplored. To determine the importance of PDGFR signaling in postnatal tendon growth, we performed pharmacological blockade of PDGFR and PDGFR, and then induced tendon growth via mechanical overload using the hindlimb synergist ablation model. Our hypothesis was that inhibition of PDGFR signaling will restrict normal growth of tendon tissue in response to mechanical loading.
Postnatal tendon growth and remodeling require platelet-derived growth factor receptor signaling.
Sex, Treatment
View SamplesOxidative stress is a harmful condition in a cell, tissue, or organ, caused by an imbalnace between reactive oxygen species and other oxidants and the capacity of antioxidant defense systems to remove them. The budding yeast S. cerevisiae has been the major eukaryotic model for studies of response to oxidative stress.
The genome-wide early temporal response of Saccharomyces cerevisiae to oxidative stress induced by cumene hydroperoxide.
No sample metadata fields
View SamplesHuman T-cell development is less well studied than its murine counterpart due to the lack of genetic tools and the difficulty of obtaining cells and tissues. However, recent technological advances allow identification of the transcriptional landscape of differentiating human thymocytes. Here we report the gene expression profiles of 11 immature, consecutive T-cell developmental stages. The changes in gene expression of cultured stem cells on OP9-DL1 match those of ex vivo isolated human thymocytes. These analyses led us to define evolutionary conserved gene signatures that represent pre- and post- T-cell commitment stages. We found that loss of CD44 marks T-cell commitment in early CD7+CD5+CD45dim cells, before the acquisition of CD1a surface expression. The CD44-CD1a- post-committed thymocytes have initiated in frame TCR rearrangements and have completely lost the capacity to develop into myeloid, B- and NK-cells, unlike uncommitted CD44+CD1a- thymocytes. Therefore, loss of CD44 represents a previously unrecognized stage that defines the earliest committed T-cell population in the human thymus.
Loss of CD44<sup>dim</sup> Expression from Early Progenitor Cells Marks T-Cell Lineage Commitment in the Human Thymus.
No sample metadata fields
View SamplesThe present study aims to explore chemostat-based transcriptome analysis of mixed cultures by investigating interactions between the yeast S. cerevisiae and the lactic acid bacterium Lb. bulgaricus . S. cerevisiae and Lb. bulgaricus are both frequently encountered in kefir, a fermented dairy product (25). In the context of this study, this binary culture serves as a model for the many traditional food and beverage fermentation processes in which yeasts and lactic acid bacteria occur together (19,26-30). The design of the cultivation conditions was based on the observation that Lb. bulgaricus, but not S. cerevisiae, can use lactose as a carbon source for growth and that S. cerevisiae, but not Lb. bulgaricus, can grow on galactose that is released upon hydrolysis of lactose by the bacterial -galactosidase.
Transcriptome-based characterization of interactions between Saccharomyces cerevisiae and Lactobacillus delbrueckii subsp. bulgaricus in lactose-grown chemostat cocultures.
No sample metadata fields
View SamplesStressors may have negative or positive effects in dependence of the dose (hormesis). We studied this phenomenon in Caenorhabditis elegans by applying weak or severe abiotic (cadmium, CdCl2) and/or biotic stress (different bacterial diets) during cultivation/breeding of the worms, and determining developmental speed or survival rates and performing transcriptome profiling and RT-qPCR analyses to explore the genetic basis of the detected phenotypic differences. This study showed that a bacterial diet resulting in higher levels of energy resources in the worms (E. coli OP50 feeding) or weak abiotic and biotic stress especially promote the resistance against severe abiotic or biotic stress and the age-specific survival rate of WT. Overall design: Five experimental conditions; mostly three replicates per experimental condition; four contrasts between test and control conditions functionally analyzed.
Bacterial diet and weak cadmium stress affect the survivability of <i>Caenorhabditis elegans</i> and its resistance to severe stress.
Cell line, Treatment, Subject
View Samples