Description
Platelet-derived growth factor receptor (PDGFR) signaling plays an important role in the embryonic formation of many different tissues. There is a family of PDGF isoforms which signal through the PDGF receptors (PDGFR) and (PDGFR). PDGF regulates many key cellular processes of mesenchymal cell function including proliferation, differentiation, migration and extracellular matrix (ECM) synthesis. While PDGF has been used to enhance flexor tendon healingin vivo, its role in postnatal tendon growth has remained largely unexplored. To determine the importance of PDGFR signaling in postnatal tendon growth, we performed pharmacological blockade of PDGFR and PDGFR, and then induced tendon growth via mechanical overload using the hindlimb synergist ablation model. Our hypothesis was that inhibition of PDGFR signaling will restrict normal growth of tendon tissue in response to mechanical loading.