This SuperSeries is composed of the SubSeries listed below.
Systems biology approaches reveal a specific interferon-inducible signature in HTLV-1 associated myelopathy.
Sex, Age, Disease, Race
View SamplesInfection with the human T lymphotropic virus type 1 (HTLV-1) remains asymptomatic in the majority of carriers; however, some 5% develop a chronic inflammation of the central nervous system termed HTLV-1-associated myelopathy (HAM). It is not well understood how the virus triggers the onset of HAM after many years of clinical latency and importantly, what distinguishes hosts who develop the disease from those who remain asymptomatic. In this study we tested the hypothesis that patients with HAM can be distinguished from asymptomatic HTLV-1 carriers (ACs) and uninfected subjects by their whole blood transcriptional profiles. Here, we compare unstimulated whole blood gene expression profiles of 20 asymptomatic HTLV-1 carriers (ACs), 10 patients with HAM and 9 uninfected healthy control subjects to (1) identify a transcriptional signature associated with presence of HAM and (2) identify cell types and pathways abnormally regulated in HAM by canonical and modular pathway analysis.
Systems biology approaches reveal a specific interferon-inducible signature in HTLV-1 associated myelopathy.
Sex, Age, Disease, Race
View SamplesInfection with the human T lymphotropic virus type 1 (HTLV-1) remains asymptomatic in the majority of carriers; however, some 5% develop a chronic inflammation of the central nervous system termed HTLV-1-associated myelopathy (HAM). It is not well understood how the virus triggers the onset of HAM after many years of clinical latency and importantly, what distinguishes hosts who develop the disease from those who remain asymptomatic. In a previous study we identified a 80-gene transcriptional signature of HAM based in the hypothesis that patients with HAM can be distinguished from asymptomatic HTLV-1 carriers (ACs) and uninfected subjects by their whole blood transcriptional profiles. In this study we wished to validate the 80-gene signature on an independent cohort comprising 17 asymptomatic HTLV-1 carriers (ACs), 10 patients with HAM and 8 uninfected healthy control subjects.
Systems biology approaches reveal a specific interferon-inducible signature in HTLV-1 associated myelopathy.
Sex, Age, Disease, Race
View SamplesListeriosis is an infectious disease caused by the intracellular bacterium Listeria monocytogenes. To control the infection effectively, the host immune response is directed by intercellular signalling molecules called cytokines that are produced by immune cells following sensing of the bacteria. In this study we used gene expression analysis to examine complex immune signalling networks in the blood and tissues of mice infected with L. monocytogenes. We show that a large set of genes are perturbed in both blood and tissue upon infection and that the transcriptional responses in both are enriched for pathways of the immune response. From these data we also observe an important signalling network emerge from a group of cytokines called interferons (IFNs). Previous findings suggest that different IFN family members can determine the balance between successful and impaired immune responses to L. monocytogenes and several other bacterial infections. Using mice deficient for the detrimental type I IFN signalling pathway we show that IFN-inducible genes are differentially regulated at different times upon infection but also present at much lower levels in uninfected mice highlighting how dysregulation of this network in the steady state may determine the outcome of this bacterial infection.
Analysis of Transcriptional Signatures in Response to Listeria monocytogenes Infection Reveals Temporal Changes That Result from Type I Interferon Signaling.
Sex, Specimen part, Treatment
View SamplesThis SuperSeries is composed of the SubSeries listed below.
TPL-2-ERK1/2 signaling promotes host resistance against intracellular bacterial infection by negative regulation of type I IFN production.
Specimen part
View SamplesAnalysis of Mtb infected murine macrophages derived from C57Bl/6 WT, TPL2KO, IFNARKO & TPL2IFNAR DKO mice [Set 2]
TPL-2-ERK1/2 signaling promotes host resistance against intracellular bacterial infection by negative regulation of type I IFN production.
Specimen part
View SamplesAnalysis of Mtb infected murine macrophages derived from C57Bl/6 WT, TPL2KO, IFNARKO & TPL2IFNAR DKO mice [Set 1]
TPL-2-ERK1/2 signaling promotes host resistance against intracellular bacterial infection by negative regulation of type I IFN production.
Specimen part
View SamplesThe objective was to study the transcriptomic changes in adipose tissue in the early stages of lactation, specifically in Bos Taurus, Holstein dairy cattle as a function of milk production and genetic merit.
Differential expression of genes in adipose tissue of first-lactation dairy cattle.
Specimen part
View SamplesThe epigenetic regulator BMI1 is upregulated in many human malignancies and has been implicated in cell migration, but the impact on autochthonous tumor progression is unexplored. Our analyses of human expression data show that BMI1 levels increase with progression in melanoma. We find that BMI1 expression in melanoma cells does not influence cell proliferation or primary tumor growth. In contrast, BMI1 levels are a key determinant of melanoma metastasis, whereby deletion impairs and overexpression enhances dissemination. Remarkably, BMI1’s pro-metastatic effect reflects enhancement of all stages of the metastatic cascade including invasion, migration, extravasation, adhesion and survival. Additionally, downregulation or upregulation of BMI1 induces sensitivity or resistance to BRAF inhibitor. Consistent with these pleiotropic effects, we find that BMI1 promotes widespread gene expression changes that encompass key hallmarks of the melanoma invasive signature, including activation of TGFß, non-canonical Wnt, EMT and EGF/PDGF pathways. Importantly, for both primary and metastatic melanoma samples, this BMI1-induced signature identifies invasive subclasses of human melanoma and predicts poor patient outcome. Our data yield key insights into melanoma biology and establish BMI1 as a compelling drug target whose inhibition would suppress both metastasis and chemoresistance. Overall design: Three replicates of A375 BMI1 or GFP overexpressing cells.
BMI1 induces an invasive signature in melanoma that promotes metastasis and chemoresistance.
No sample metadata fields
View SamplesTo identify sex-based differences in gene pathways affected by endgoenous genomic instaiblity resulting in embryonic death, total RNA from E13.5 placentas was isolated for RNAseq. Placentas from male and female embryos from wild-type matings and Mcm4^C3/C3 homozygous matings were used as references. Male and female placentas derived from embryos of the genotype : Mcm4^C3/C3 Mcm2^Gt/+ from either male Mcm4^C3/+ Mcm2^Gt/+ crossed to female Mcm4^C3/C3 or male Mcm4^C3/C3 crossed to female Mcm4^C3/+ Mcm2^Gt/+ were the experimental samples. Overall design: Total RNA was isolated from E13.5 placentas and subjected to directional RNAseq to identify sex-based transciptome differences.
Female-biased embryonic death from inflammation induced by genomic instability.
Specimen part, Cell line, Subject
View Samples