refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
    0
github link
Build and Download Custom Datasets
refine.bio helps you build ready-to-use datasets with normalized transcriptome data from all of the world’s genetic databases.
Showing
of 2103 results
Sort by

Filters

Technology

Platform

accession-icon GSE3059
Leukocytes Gene Expression in Correlation to Plasma Lipid Levels
  • organism-icon Homo sapiens
  • sample-icon 32 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Background---For decades, plasma lipid levels have been known risk factors of atherosclerosis. Recently, inflammation has gained acceptance as a crucial event in the pathogenesis and development of atherosclerosis. A number of studies have provided some insights into the relationships between the two aspects of atherosclerosis: plasma lipids --- the risk factors, and circulating leukocytes --- the effectors of inflammation. In this study, we investigate the relationships between plasma lipids and leukocytes.

Publication Title

Identifying leukocyte gene expression patterns associated with plasma lipid levels in human subjects.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE10070
Gene Expression in MCF10A cells through Differentiation on Transwells
  • organism-icon Homo sapiens
  • sample-icon 13 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

To further understand the differences occurring in MCF10A cells as they polarize and differentiate in the Transwell model, we performed gene expression profiling with Affymetrix Human Genome U133 Plus 2.0 Arrays. Four experimental time points, were sampled: conventional cultures of MCF10A cells grown on plastic (Monolayer) and MCF10A cells plated on Transwells sampled at three TEER values, 200-300 cm2 (Base), 1400-1600 cm2 (Midpoint), and 3000-3200 cm2 (Plateau).

Publication Title

In vitro multipotent differentiation and barrier function of a human mammary epithelium.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE23206
NSCLC cells treated with Gefitinib
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

About 10% of all NSCLC patients respond to gefitnib treatment and all of these patients will acquire resistance to the EGFR TKI.

Publication Title

Rapidly acquired resistance to EGFR tyrosine kinase inhibitors in NSCLC cell lines through de-repression of FGFR2 and FGFR3 expression.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE37450
Molecular Phenotyping of Immune Cells from Young NOD Mice
  • organism-icon Mus musculus
  • sample-icon 60 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Expression 430A Array (moe430a)

Description

Islet leukocytic infiltration (insulitis) is first obvious at around 4 weeks of age in the NOD mouse a model for human type 1 diabetes (T1DM). The molecular events leading to insulitis are poorly understood. Since TIDM is caused by numerous genes, we hypothesized that multiple molecular pathways are altered and interact to initiate this disease.

Publication Title

Molecular phenotyping of immune cells from young NOD mice reveals abnormal metabolic pathways in the early induction phase of autoimmune diabetes.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE43794
Differentiation of human fetal multipotential neural progenitor cells to astrocytes reveals susceptibility factors for JC Virus
  • organism-icon Homo sapiens
  • sample-icon 19 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Viral infections of the CNS are of increasing concern, especially among immunocompromised populations. Rodent models are often inappropriate for studies of CNS infection, as many viruses, including JC Virus (JCV) and HIV, cannot replicate in rodent cells. Consequently, human fetal brain-derived multipotential CNS progenitor cells (NPCs) that can be differentiated into neurons, oligodendrocytes, or astrocytes, have served as a model for CNS studies. NPCs can be non-productively infected by JCV, while infection of progenitor-derived astrocytes (PDAs) is robust. We profiled cellular gene expression at multiple times during differentiation of NPCs to PDAs. Several activated transcription factors show commonality between cells of the brain in which JCV replicates and lymphocytes in which JCV is likely latent. Bioinformatic analysis determined transcription factors that may influence the favorable transcriptional environment for JCV in PDAs. This study attempts to provide a framework for understanding the functional transcriptional profile necessary for productive JCV infection.

Publication Title

Differentiation of human fetal multipotential neural progenitor cells to astrocytes reveals susceptibility factors for JC virus.

Sample Metadata Fields

Specimen part, Time

View Samples
accession-icon GSE36386
ZNF335 regulates stem cell proliferation and neuronal differentiation via Trithorax complex and REST/NRSF
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Microcephaly gene links trithorax and REST/NRSF to control neural stem cell proliferation and differentiation.

Sample Metadata Fields

Time

View Samples
accession-icon GSE36384
ZNF335 regulates stem cell proliferation and neuronal differentiation via Trithorax complex and REST/NRSF [gene expression]
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The progression from stem cell to differentiated neuron is associated with extensive chromatin remodeling that controls gene expression, but the mechanisms that connect chromatin to gene expression are not well defined. Here we show that mutation of ZNF335 causes severe human microcephaly ("small brain"), small somatic size, and neonatal death. Germline Znf335 null mutations are embryonically lethal in mice, whereas RNA-interference studies and postmortem human studies show that Znf335 is essential for neural progenitor self-renewal, neurogenesis, and neuronal differentiation. Znf335 is a component of a vertebrate-specific, trithorax H3K4 methylation complex, while global ChIP-seq and mRNA expression studies show that Znf335 is a previously unsuspected, direct regulator of REST/NRSF, a master regulator of neural gene expression and neural cell fate, as well as other essential neural-specific genes. Our results reveal ZNF335 as an essential link between H3K4 complexes and REST/NRSF, and provide the first direct evidence that this pathway regulates human neurogenesis and neuronal differentiation.

Publication Title

Microcephaly gene links trithorax and REST/NRSF to control neural stem cell proliferation and differentiation.

Sample Metadata Fields

Time

View Samples
accession-icon GSE11981
Gene expression profiling of HhAntag-treated pancreatic xenografts
  • organism-icon Homo sapiens
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Four vehicle-treated and four HhAntag-treated pancreatic xenograft tumors were profiled for gene expression changes using Affymetrix U133 Plus 2.0 and Affymetrix Mouse Genome 430 2.0 arrays.

Publication Title

A paracrine requirement for hedgehog signalling in cancer.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE2429
Atypical Ductal Hyperplasia
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Fresh Atypical ductal hyperplasia (ADH) tissue collected from breast of a women who either (1) had no prior history of breast cancer and had not developed breast cancer in five years after diagnosis, (2) had cancer before ADH, or had cancer at the time as ADH or developed cancer after ADH diagnosis

Publication Title

Identification of MMP-1 as a putative breast cancer predictive marker by global gene expression analysis.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP154372
Differential gene expression in NPHS2-Cre +/+ mouse glomeruli versus wild-type control
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

To investigate differential gene expression that might account for the differing glomerular phenotype of NPHS2-Cre +/+ mice when compared with wild-type control, including altered GBM thickness, loss of normal foot process morphology, and decrease in podocyte number, RNA sequencing analysis was performed on glomeruli extracted from both NPHS2-Cre +/+ and wild-type control mice. Overall design: Following isolation of glomeruli using Dynabeads from NPHS2-Cre +/+ and wild-type control mice (n=2 biological replicates per genotype, singly isolated), total RNA was extracted and RNA samples were submited for sample preparation and sequencing.

Publication Title

Podocyte-specific expression of Cre recombinase promotes glomerular basement membrane thickening.

Sample Metadata Fields

Sex, Age, Specimen part, Cell line, Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact