Research shows that mindfulness practice can alter the expression of genes associated with energy metabolism, telomere maintenance, inflammatory and stress response. The aim of this study was to determine if mindfulness awareness practice (MAP) or health education program (HEP) might reverse cognitive impairment and/or prevent further cognitive decline in 60 subjects (aged 60-90). We investigated the gene expression changes in subject with mild cognitive impairment randomized to either group after 9 months.
Dataset on gene expression in the elderly after Mindfulness Awareness Practice or Health Education Program.
Sex, Treatment, Race
View SamplesThe challenge of predicting which patients with breast cancer will develop metastases leads to the overtreatment of patients with benign disease and to the inadequate treatment of the aggressive cancers. Here, we report the development and testing of a microfluidic assay that quantifies the abundance and proliferation of migratory cells in breast-cancer specimens, for the assessment of their metastatic propensity and for the rapid screening of potential antimetastatic therapeutics. On the basis of the key roles of cell motility and proliferation in cancer metastasis, the device accurately predicts the metastatic potential of breast-cancer cell lines and of patient-derived xenografts. Compared to unsorted cancer cells, highly motile cells isolated by the device exhibited similar tumourigenic potential but markedly increased metastatic propensity in vivo. RNA sequencing of the highly motile cells revealed an enrichment of motility-related and survival-related genes. The approach might be developed into a companion assay for the prediction of metastasis in patients and for the selection of effective therapeutic regimens. Overall design: RNA was isolated from samples of 1000Â migratory or unsorted cells in triplicate
A microfluidic assay for the quantification of the metastatic propensity of breast cancer specimens.
Specimen part, Cell line, Subject
View SamplesWe measured gene expression in the adrenal glands of the Spontaneously Hypertensive Rat (SHR) and Wistar-Kyoto rat (WKY) using Affymetrix RG-U34A GeneChips. All rats were aged-matched at 4-weeks. The rats were obtained from the colonies at the Univeristy of California San Diego, La Jolla, CA.
Common genetic mechanisms of blood pressure elevation in two independent rodent models of human essential hypertension.
No sample metadata fields
View SamplesWe performed Affymetrix MG-U74Av2 GeneChip experiements on mRNA from the adrenal glands of the BPH hypertensive and BPL hypotensive mouse strains. All mice were aged-matched at 5 weeks. We obtained the mice from Jackson Laboratories, Bar Harbor, ME.
Neuroendocrine transcriptome in genetic hypertension: multiple changes in diverse adrenal physiological systems.
No sample metadata fields
View SamplesWe were interested in characterizing the transcriptional changes that occur on a genome-wide scale following treatment of EGFR-mutant lung cancer cells with targeted therapies.
Inhibition of mutant EGFR in lung cancer cells triggers SOX2-FOXO6-dependent survival pathways.
Specimen part, Cell line, Treatment
View SamplesmiRNA abnormalities are increasingly relevent to cancer development, We used microarrays to detail the global programme of gene expression upon miR-483 overexpression in sarcoma cell line MHH-ES-1.
The IGF2 intronic miR-483 selectively enhances transcription from IGF2 fetal promoters and enhances tumorigenesis.
Cell line, Treatment
View SamplesIn human cells, Staufen1 is double-stranded RNA-binding protein involved in several cellular functions including mRNA localization, translation and decay. We used a genome wide approach to identify and compare the mRNA targets of mammalian Staufen1. The mRNA content of Staufen1 mRNPs was identified by probing DNA microarrays with probes derived from mRNAs isolated from immunopurified Staufen-containing complexes following transfection of HEK293T cells with a Stau1-HA expressor. Our results indicate that 7% of the cellular RNAs expressed in HEK293T cells are found in Stau1-containing mRNPs. There is a predominance of mRNAs involved in cell metabolism, transport, transcription, regulation of cell processes and catalytic activity.
A genome-wide approach identifies distinct but overlapping subsets of cellular mRNAs associated with Staufen1- and Staufen2-containing ribonucleoprotein complexes.
No sample metadata fields
View SamplesIn human cells, Staufen2 is a double-stranded RNA-binding protein involved in several cellular functions. Although 51% identical to Staufen1, these proteins are nevertheless found in different RNA particles. In addition, differential splicing events generate Staufen2 isoforms that only differ at their N-terminal extremities. We used a genome wide approach to identify and compare the mRNA targets of mammalian Staufen2 isoforms. The mRNA content of Staufen mRNPs was identified by probing DNA microarrays with probes derived from mRNAs isolated from immunopurified Staufen2-containing complexes following transfection of HEK293T cells with Stau2-HA (59kDa) or Stau2-HA (62kDa) expressors. Our results indicate that 11% of the cellular RNAs expressed in HEK293T cells are found in Stau2-containing mRNPs. There is a predominance of mRNAs involved in cell metabolism, transport, transcription, regulation of cell processes and catalytic activity.
A genome-wide approach identifies distinct but overlapping subsets of cellular mRNAs associated with Staufen1- and Staufen2-containing ribonucleoprotein complexes.
No sample metadata fields
View SamplesNext Generation Sequencing technologies have enabled de novo gene fusion discovery that could reveal candidates with therapeutic significance in cancer. Here we present an open-source software package, ChimeraScan, for the discovery of chimeric transcription between two independent transcripts. Overall design: Three cancer cell lines with known gene fusions
ChimeraScan: a tool for identifying chimeric transcription in sequencing data.
No sample metadata fields
View SamplesDirect reprogramming of human fibroblasts to a pluripotent state has been achieved through ectopic expression of the transcription factors OCT4, SOX2, and either cMYC and KLF4 or NANOG and LIN28. Little is known, however, about the mechanisms by which reprogramming occurs, which is in part limited by the low efficiency of conversion. To this end, we sought to create a doxycycline-inducible lentiviral system to convert primary human fibroblasts and keratinocytes into human induced pluripotent stem (hiPS) cells. hiPS cells generated with this system were molecularly and functionally similar to human embryonic stem (hES) cells, demonstrated by gene expression profiles, DNA methylation status, and differentiation potential. While expression of the viral transgenes was required for several weeks in fibroblasts, we found that 10 days was sufficient for the reprogramming of keratinocytes, suggesting that the kinetics of reprogramming are cell-type dependent. Using our inducible system, we developed a strategy to induce hiPS cell formation at high frequency by generating differentiated cells that contain the viral transgenes in a pattern that enables successful induction of pluripotency. Upon addition of doxycycline to differentiated hiPS-derived cells, we obtained secondary hiPS cells at a frequency at least 100-fold greater than the initial conversion. The ability to reprogram cells with high efficiency provides a unique platform to dissect the underlying molecular and biochemical processes that accompany nuclear reprogramming.
A high-efficiency system for the generation and study of human induced pluripotent stem cells.
No sample metadata fields
View Samples