Using microarray analysis, we explored the differences in gene expression in wounded and intact skin using murine model. Injured skin samples were examined at days 1 and 4 post injury.
Receptor Mincle promotes skin allergies and is capable of recognizing cholesterol sulfate.
Specimen part, Time
View SamplesWe performed a 3' RACE of a novel HIV RNA TAR-gag in order to determine the sequence of the RNA at the 3' end. Our data had shown that TAR-gag was potentially a noncoding RNA and our hypothesis was that TAR-gag ended somewhere prior to the end of the gag region of the HIV genome. The 3' RACE experiment showed that TAR-gag actually consists of four different RNA clusters, the longest of which ends at 615 bases from the transcription start site; this is in the middle of the p17 region of the gag gene. In addition, we sequenced all host RNAs in the EVs. Overall design: RNA from J1.1 and U1 exosomes was isolated and converted to cDNA. Sequencing libraries of the cDNA were made and a 3' RACE was perforemed to determine how long TAR-gag RNA is. Please note that the clustering analysis (published in PMID 28536264) was done only on the unfragmented samples (i.e. *-U samples).
An Omics Approach to Extracellular Vesicles from HIV-1 Infected Cells.
Specimen part, Subject
View SamplesWild type Columbia and serrate-1 globular stage embryos were sequenced in order to profile miRNAs which are expressed in embryogenesis in Arabidopsis thaliana Overall design: Two biological replicates, two conditions
Arabidopsis thaliana miRNAs promote embryo pattern formation beginning in the zygote.
Specimen part, Subject
View SamplesAlternative splicing of pre-mRNA generates protein diversity and has been linked to cancer progression and drug response. Exon microarray technology enables genome-wide quantication of expression levels for the majority of exons and facilitates the discovery of alternative splicing events. Analysis of exon array data is more challenging than gene expression data and there is a need for reliable quantication of exons and alternative spliced variants. We introduce a novel, computationally efficient methodology, MEAP, for exon array data preprocessing, analysis and visualization. We compared MEAP with other preprocessing methods, and validation of the results show that MEAP produces reliable quantication of exons and alternative spliced variants. Analysis of data from head and neck squamous cell carcinoma (HNSCC) cell lines revealed several variants associated with 11q13 amplication, which is a predictive marker of metastasis and decreased survival in HNSCC patients. Together these results demonstrate the utility of MEAP in suggesting novel experimentally testable predictions. Thus, in addition to novel methodology to process large-scale exon array data sets, our results provide several HNSCC candidate genes for further studies.
Comprehensive exon array data processing method for quantitative analysis of alternative spliced variants.
Cell line
View SamplesWe isolated and selected intestinal adenoma organoids from Apcmin/+; Rosa26LSL-TdTomato; Prox1-CreERT2 mice. After the selection procedure without growth factors, we induced CreERT2 activity and the transcription of tdTomato to label Prox1+ cells by 300 nM 4-hydroxytamoxifen for 16h. tdTomato+ (Prox1+) and tdTomato- cells (enriched for Prox1- cells) were FACS sorted and total RNA was isolated.
Transcription Factor PROX1 Suppresses Notch Pathway Activation via the Nucleosome Remodeling and Deacetylase Complex in Colorectal Cancer Stem-like Cells.
Specimen part
View SamplesTo study the role of epigenetics and hormones on hematopoietic stem cell function, hematopoietic stem and progenitor (LSK) cells were sorted from E14.5 embryos of wild-type, DNMT3B7 hemizygous or DNMT3B7 homozygous genotype. The expression analysis was performed to provide information regarding the mechanism by which hormones regulate hematopoiesis. Overall design: Hematopoietic stem and progenitor (LSK) cells from E14.5 murine embryonic fetal livers of wild-type, or DNMT3B7 transgenic genotypes were flow-sorted, and RNA isolated for expression analysis by RNA-Sequencing
Epigenetic Control of Apolipoprotein E Expression Mediates Gender-Specific Hematopoietic Regulation.
No sample metadata fields
View SamplesDNA methylation is an epigenetic mark that silences transposable elements (TEs) and repeats. Whereas the establishment and maintenance of DNA methylation are relatively well understood, little is known on their dynamics and biological relevance in plant and animal innate immunity. Here, we show that some TEs are demethylated and transcriptionally reactivated during antibacterial defense in Arabidopsis. This effect is concomitant with the down-regulation of key transcriptional gene silencing factors as well as an active demethylation process. DNA demethylation restricts multiplication and vascular propagation of the bacterial pathogen Pseudomonas syringae in leaves and, accordingly, some immune-response genes, containing repeats in their promoters, are negatively regulated by DNA methylation. This study provides evidence that DNA demethylation is part of a plant-induced immune response, potentially acting to prime transcriptional activation of some defense genes linked to Tes/repeats. We have monitored the transcript changes in Arabidopsis plants treated with a flagellin-derived peptide. Overall design: DNA methylation is closely related to 24nt sRNAs. This is why we sequenced small RNA population in our study. 5-week-old Col-0 leaf samples (treated with either water or flg22 at 1 ?M concentration for 6 h) and deep sequenced by Fasteris (Geneva) on the Illumina HiSeq 2000 platform.
Dynamics and biological relevance of DNA demethylation in Arabidopsis antibacterial defense.
Age, Specimen part, Treatment, Subject
View SamplesThe rapid development in septic patients of features of marked immunosuppression associated with increased risk of nosocomial infections and mortality represents the rational for the initiation of immune targeted treatments in sepsis. However, as there is no clinical sign of immune dysfunctions, the current challenge is to develop biomarkers that will help clinicians identify the patients that would benefit from immunotherapy and monitor its efficacy. Using an in vitro model of endotoxin tolerance (ET), a pivotal feature of sepsis-induced immunosuppression in monocytes, we identified using gene expression profiling by microarray a panel of transcripts associated with the development of ET which expression was restored after immunostimulation with interferon-gamma (IFN-). These results were confirmed by qRT-PCR. Importantly, this short-list of markers was further evaluated in patients. Of these transcripts, six (TNFAIP6, FCN1, CXCL10, GBP1, CXCL5 and PID1) were differentially expressed in septic shock patients blood compared to healthy blood upon ex vivo LPS stimulation and were restored by IFN-. In this study, by combining a microarray approach in an in vitro model and a validation in clinical samples, we identified a panel of six transcripts that could be used for the identification of septic patients eligible for IFNg therapy. The potential value of these markers should now be evaluated in a larger cohort of patients. Upon favorable results, they could serve as stratification tools prior to immunostimulatory treatment and to monitor drug efficacy.
Identification of biomarkers of response to IFNg during endotoxin tolerance: application to septic shock.
No sample metadata fields
View SamplesBackground: Severe septic syndromes deeply impair innate and adaptive immunity. While neutrophils represent the first line of defense against infection, little is known about their phenotype and functions during sepsis-induced immunosuppression. The objective of this study was thus to perform for the first time a global evaluation of neutrophil alterations in immunosuppressed septic patients based on phenotypic, functional and transcriptomic studies. In addition, the potential association of these parameters and deleterious outcomes was assessed.
Marked alterations of neutrophil functions during sepsis-induced immunosuppression.
Disease
View SamplesBackground and aims. The etiopathology of inflammatory bowel diseases is still poorly understood. To date, only few little data are available on the microbiota composition in ulcerative colitis (UC), representing a major subform of inflammatory bowel diseases. Currently, one of the main challenges is to unravel the interactions between genetics and environmental factors in the onset or during the progression and maintenance of the disease. The aim of the present study was to analyse twin pairs discordant for UC for both gut microbiota dysbiosis and host expression profiles at a mucosal level and to get insight into the functional genomic crosstalk between microbiota and mucosal epithelium in vivo. Methods. Biopsies were sampled from the sigmoid colon of both healthy and diseased siblings from UC discordant twin pairs but also from healthy twins. Microbiota profiles were assessed by 16S rDNA libraries while mRNA expression profiles were analysed from the same volunteers using Affymetrix microarrays.
Twin study indicates loss of interaction between microbiota and mucosa of patients with ulcerative colitis.
Specimen part, Subject
View Samples