Mastitis in dairy cows is one of the most costly and prevalent diseases affecting dairy cows world wide. Insight in the molecular regulation of the host immune response to an E. coli infection, could help to develop new strategies to prevent cattle from E. coli infection. Here we performed a gene-expression analysis from udder tissue exposed to a controlled E. coli infection at T=24h post infection (p.i.) representing the acute phase response and at T=192h p.i. representing a chronic stage.
In depth analysis of genes and pathways of the mammary gland involved in the pathogenesis of bovine Escherichia coli-mastitis.
Specimen part, Treatment
View SamplesLiver plays a profound role in the acute phase response (APR) observed in the early phase of acute bovine mastitis caused by Escherichia coli (E. coli). To gain an insight into the genes and pathways involved in hepatic APR of dairy cows we performed a global gene expression analysis of liver tissue sampled at different time points before and after intra-mammary (IM) exposure to E. coli lipopolysaccharide (LPS) treatment.
Gene expression profiling of liver from dairy cows treated intra-mammary with lipopolysaccharide.
No sample metadata fields
View SamplesWe studied the response to infection and associated perturbations to the bovine livers normal function by examining gene transcription data from liver biopsies collected following an E. coli infection in the udder of primiparous dairy cows. This is the first study to examine gene transcription responses to systemic infection by the E. coli bacterium in dairy cows. First, we verified that the inoculation protocol resulted in systemic infection in the cows. This was done based on records on three clinical symptoms: body temperature and amount of E. coli bacteria and leukocytes in milk samples. Second, we examined gene transcription patterns underlying the clinical traits. Gene transcription levels at times of peak values for the clinical traits were estimated in the liver to study indications of an acute phase response to systemic E. coli infection in the cows. Finally, we compared gene transcription responses to E. coli infection and lipopolysaccaride (LPS) inoculation.
Transcriptional profiling of the bovine hepatic response to experimentally induced E. coli mastitis.
Sex, Specimen part, Time
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Effect of developmental NMDAR antagonism with CGP 39551 on aspartame-induced hypothalamic and adrenal gene expression.
Sex, Age, Specimen part
View SamplesGender dimorphism exists in the physiological response to diet and other environmental factors. Trans-hydrogenated fatty acid (TFA) intake is associated with an increase in coronary heart disease (CHD), and gender differences in the incidence of CHD are well documented. Neonatal administration of Monosodium Glutamate (MSG) causes stunted heart growth and hypoplasticity; and gender dimorphism at the growth hormone axis has been demonstrated in MSG-treated rodents. The identification of gender dimorphism in cardiac nutrigenomics may provide the basis for gender-specific medicine in the future.
Sex-dimorphism in cardiac nutrigenomics: effect of trans fat and/or monosodium glutamate consumption.
Sex, Specimen part
View SamplesChronic dietary aspartame may impair rodent insulin tolerance and may affect behavior. Previous studies have shown the aspartame effects may be modulated by developmental NMDA receptor antagonism. Present study was designed to assess effects of aspartame and NMDAR antagonism on components of the HPA axis.
Effect of developmental NMDAR antagonism with CGP 39551 on aspartame-induced hypothalamic and adrenal gene expression.
Sex, Age, Specimen part
View SamplesChronic dietary aspartame may impair rodent insulin tolerance and may affect behavior. Previous studies have shown the aspartame effects may be modulated by developmental NMDA receptor antagonism. Present study was designed to assess effects of aspartame and NMDAR antagonism on components of the HPA axis.
Effect of developmental NMDAR antagonism with CGP 39551 on aspartame-induced hypothalamic and adrenal gene expression.
Sex, Age, Specimen part
View SamplesThe X-linked DDX3X gene encodes an ATP-dependent DEAD-box RNA helicase frequently altered in various human cancers including melanomas. Despite its important roles in translation and splicing, how DDX3X dysfunction specifically rewires gene expression in melanoma remains completely unknown. Here we uncover a DDX3X-driven post-transcriptional program that dictates melanoma phenotype and poor disease prognosis. Through an unbiased analysis of translating ribosomes we identified the microphtalmia-associated transcription factor, MITF, as a key DDX3X translational target that directs a proliferative-to-metastatic phenotypic switch in melanoma cells. Mechanistically, DDX3X controls MITF mRNA translation via an internal ribosome entry site (IRES) embedded within the 5' untranslated region. Through this exquisite translation-based regulatory mechanism, DDX3X steers MITF protein levels dictating melanoma metastatic potential in vivo and response to targeted therapy. Together these findings unravel a post-transcriptional layer of gene regulation that may provide a unique therapeutic vulnerability in aggressive male melanomas. Overall design: We sequenced transcripts associated with translationally active ribosomes (polysomes) isolated by sucrose gradient fractionation from DDX3X and control siRNA-transduced HT144 cells. Experiments were performed in duplicates.
The X-Linked DDX3X RNA Helicase Dictates Translation Reprogramming and Metastasis in Melanoma.
Specimen part, Cell line, Subject
View SamplesThe primary aim of this project was to identify novel factors, in particular the cell-surface protein CD109, which regulate osteoclastogenesis. Microarray analysis was performed comparing two pre-osteoclast cell lines generated from the RAW 264.7 osteoclast cell line: one that has the capacity to fuse forming large multinucleated cells and one that does not fuse. It was found that CD109 was up-regulated by > 17-fold in the osteoclast forming cell line when compared to the cell line that does not fuse.
CD109 plays a role in osteoclastogenesis.
Specimen part, Cell line
View SamplesHigh quality genetic material is an essential pre-requisite when analyzing gene expression using microarray technology. Peripheral blood mononuclear cells (PBMC) are frequently used for genomic analyses, but several factors can affect the integrity of nucleic acids prior to their extraction, including the methods of PBMC collection and isolation. In this study, we compared the Ficoll-Paque density gradient centrifugation and BD Vacutainer cell preparation tube (CPT) protocols to determine if either method offered a distinct advantage in preparation of PBMC-derived immune cell subsets for their use in gene expression analysis. We compared gene expression in PBMC and individual immune cell types from Ficoll and CPT isolation protocols using Affymetrix microarrays.
Immune cell subsets and their gene expression profiles from human PBMC isolated by Vacutainer Cell Preparation Tube (CPT™) and standard density gradient.
Specimen part
View Samples